

CONVERTIA PTY LTD

Additional Site Investigation

2-6 Pilgrim Avenue & 11-13 Albert Road, Strathfield NSW

E23668.E03_Rev0 25 June 2021

Document Control

Report Title:	Additional Site Investigation; 2-6 Pilgrim Avenue & 11-13 Albert Road, Strathfield NSW
Report No:	E23668.E03_Rev0

Co	pies	Recipient
1	Soft Copy (PDF – Secured, issued by email)	Convertia Pty Ltd Suite 401, 16 Railway Parade, BURWOOD NSW 2134
1	Original (Saved to Digital Archives)	El Australia Pty Ltd Suite 6.01, 55 Miller Street, Pyrmont NSW 2009

Author

Technical Reviewer

Alero

MJDale

Linda Xiao Environmental / Civil Engineer Project Coordinator		Malcolm Dale Senior Principal – Contaminated Land CEnvP (SC Specialist) Cert No. 40038	
Revision	Details	Date	Amended By
0	Original	25 June 2021	-

© 2021 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

TABLE OF CONTENTS

Page Number

EX	ECU		MMARY	I
1.	ΙΝΤΙ	RODUCT	TION	1
	1.1	Backgro	ound and Purpose	1
	1.2	Propos	ed Development	1
	1.3	Regulat	tory Framework	1
	1.4	Project	Objectives	2
	1.5	Scope of	of Works	2
2.	SIT	E DESCR	RIPTION	3
	2.1	Propert	ty Identification, Location and Physical Setting	3
	2.2	Surrour	nding Land Use	3
	2.3	Region	al Setting	4
	2.4	Site Wa	alkover Inspection	5
3.	PRE		INVESTIGATION	6
4.	CON	NCEPTU	IAL SITE MODEL	8
	4.1	Summa	ary of Site History	8
	4.2	Subsur	face Conditions	8
	4.3	Potentia	al Contamination Sources	8
	4.4	Emergi	ng Contaminants	8
	4.5	Potentia	al Contaminants	10
	4.6	Exposu	ire Pathways and Receptors	10
	4.7	Data G	ар	11
5.	ME	THODOL	LOGY	12
	5.1	Samplir	ng and Analysis Quality Plan (SAQP)	12
	5.2	Data Q	uality Objectives	12
	5.3	Data Q	uality Indicators	15
	5.4	Samplir	ng Rationale	16
	5.5	Assess	ment Criteria	16
	5.6	Soil Sa	mpling	17
	5.7	Ground	lwater Sampling	18
6.	DAT		LITY ASSESSMENT	20
7.	RES	SULTS		22
	7.1	Soil Fie	eld Results	22
		7.1.1	Sub-Surface Conditions	22
		7.1.2	Field Observations and PID Results	22
	7.2	Ground	lwater Field Results	23

		7.2.1 7.2.2	Monitoring Well Construction Field Observations	23 23
	7.3	Laborate	ory Analytical Results	24
		7.3.1	Soil Analytical Results	24
		7.3.2	Groundwater Analytical Results	25
8.	SITE	CHARA	ACTERISATION	27
	8.1	Subsurfa	ace Conditions	27
	8.2	Soil Imp	pacts	27
	8.3	Ground	water Impacts	27
	8.4	Review	of Conceptual Site Model	27
9.	CON	CLUSIO	DN	28
10.	REC	OMMEN	IDATIONS	30
11.	STA	FEMEN	T OF LIMITATIONS	31
REF	ERE	NCES		32
ABI	BREV		S	34

Schedule of Tables

Table 2-1	Site Identification	3
Table 2-2	Surrounding Land Uses	3
Table 2-3	Regional Setting	4
Table 3-1	Summary of Previous Investigation	6
Table 4-1	PFAS Decision Tree	8
Table 4-2	Emerging or Controlled Chemicals	9
Table 4-3	Conceptual Site Model	10
Table 5-1	Summary of Project Data Quality Objectives	13
Table 5-2	Data Quality Indicators	15
Table 5-3	Adopted Investigation Levels for Soil and Groundwater	16
Table 5-4	Summary of Soil Sampling Methodology	17
Table 5-5	Summary of Groundwater Sampling Methodology	18
Table 6-1	Quality Control Process	20
Table 7-1	Generalised Sub-Surface Profile (mBGL)	22
Table 7-2	Monitoring Well Construction Details	23
Table 7-3	Groundwater Field Data	23
Table 7-4	Summary of Soil Analytical Results	24
Table 7-5	Summary of Groundwater Analytical Results	25

Appendices

APPENDIX A – FIGURES

- 1. Site Locality Plan
- 2. Sampling Location Plan

APPENDIX B – TABLES

- 1. Summary of Soil Analytical Results
- 2. Summary of Groundwater Analytical Results

APPENDIX C – PROPOSED DEVELOPMENT PLANS

APPENDIX D – SITE PHOTOGRAPHS

APPENDIX E – BOREHOLE LOGS

APPENDIX F – CALIBRATION FORMS AND FIELD DATA SHEETS

APPENDIX G – CHAIN OF CUSTODY AND SAMPLE RECEIPT DOCUMENTATION

APPENDIX H – LABORATORY ANALYTICAL REPORTS

APPENDIX I – QA/QC ASSESSMENT

EXECUTIVE SUMMARY

El Australia (El) was engaged by Convertia Pty Ltd ('the client'), to conduct an Additional Site Investigation (ASI) of the land parcel known as Site 1, 2-6 Pilgrim Avenue & 11-13 Albert Road, Strathfield NSW ('the site'). The purpose of this investigation was to determine the environmental condition (contamination status) of the site, in support of a development application (DA2020/256) to Strathfield Council and to meet obligations under the *State Environmental Planning Policy (SEPP 55) – Remediation of Land*, for the assessment and management of contaminated soil and groundwater, should this be identified.

Based on the proposed development plans (Ref. Kennedy Associates Architects, Job No. 1361, dated 17 June 2021 attached in **Appendix C**), Site 1 has been designated for the construction of 2 multi-storey mixed-use residential buildings, overlying 4 levels of basement car parking occupying almost the entire site.

This ASI follows a previous (preliminary) investigation completed for the site, which was documented under the following report:

 EI (2018) Preliminary Site Investigation with Limited Sampling, 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW (Ref. E23668.E01_Rev1, dated 7 February 2018).

Objectives

The objectives of this investigation were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- Assess the degree of any soil and groundwater contamination, by means of intrusive sampling and laboratory analysis for the relevant potential contaminants;
- Provide a conclusion regarding suitability of the site for proposed use; and
- Make recommendations for the appropriate management of any impacted soils and/or groundwater, should site contamination be confirmed.

Findings

The key findings from this ASI were as follows:

- The current site use consists of three residential unit blocks and two individual residential dwellings. There is no evidence of underground storage tanks (USTs) or underground petroleum storage systems (UPSS) on site. A Shells Coles Express service station is operating directly adjacent to the east (Site 2, 9 Albert Street, Strathfield, NSW).
- The previous (preliminary) investigation completed by EI (2018) established that:
 - The site has been used for residential purposes from at least 1943.
 - Limited intrusive investigation at five locations reported concentrations below the adopted criteria (NEPC (2013) residential with minimal opportunities for soil access) with the exception of lead in BH102_0.3-0.4 (2,800 mg/kg).
 - Data gaps following the investigation included groundwater assessment and additional soil investigation to cover the minimum guideline density.
- As part of this ASI, intrusive soil investigation was completed at four locations (BH201, BH202, BH203M and BH204M) and groundwater sampling was completed at two monitoring wells (BH203M and BH204M).

- The site lithology was generalised as a layer of gravelly silt / silty clay filling (various depths averaging 0.35m thickness), overlying natural, silty clay and shale bedrock. Subsurface conditions were consistent with the previous investigation however an average of 1.3m of fill was encountered in EI (2018).
- Standing water level was 7.39 mBGL and 8.14m BGL within the shale bedrock. Groundwater flow direction was inferred from local topography to be north-east, towards Parramatta River.
- All analytical results in representative fill and natural soil samples were found to comply with the adopted health based criteria.
- Hydrocarbon odour was noted during drilling in shale bedrock at 10mBGL at BH204M. The
 odorous material was not sampled. However no odour was detected during groundwater
 sampling and laboratory results for hydrocarbons in groundwater in both wells were below
 the laboratory limit of reporting.
- Contaminant concentrations in the representative groundwater samples were below the adopted criteria, with the exception of minor dissolved metals (chromium and zinc). The metal concentrations in groundwater were considered consistent with natural (background) conditions in long standing, urban environments, rather than site specific impacts. Therefore, the detected metal concentrations are not considered to be cause of environmental concern for the site development.

Based on the findings from this ASI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 11**), El concludes that, based on the proposed development:

- There is localised lead impact (2,800 mg/kg) in fill around location BH102 (to a depth of at least 0.4m BGL). However, under the proposed development, bulk excavation of site soils would be performed in order to construct the basement which covers location BH102. It was considered the risk to human health and the environment was low; and
- The site can be made suitable for the proposed development, provided the recommendations detailed in **Section 10** are implemented.

El makes the following recommendations in relation to the proposed development:

- Prior to proposed site demolition, a suitably qualified and experienced consultant should be engaged to perform a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition works. All identified hazardous materials must be appropriately managed to maintain worker health and safety during demolition works and to prevent spreading of hazardous materials to site soils.
- Fill material within the proposed basement footprint, which will include the lead impacted surficial fill, is to be classified and disposed off-site in accordance with EPA (2014) Waste Classification Guidelines as part of bulk excavation works for the construction of the four level basement carpark. All soil to be disposed offsite is to be classified in accordance with EPA (2014) Waste Classification Guidelines, including VENM.
- A construction environmental management plan (CEMP) is prepared by the principal or earthworks contractor. The CEMP should consider the normal environmental issues that may occur during development such as but not limited to dust, noise, odour, vibration, safety and traffic and also include:
 - Waste management of soils (including fill) to ensure that are appropriately classified for disposal in accordance with the NSW EPA Waste Management Guidelines (Part 1 Classifying Waste); and

- Provide unexpected finds protocols should any unexpected hydrocarbons contamination or hazardous materials are identified during site earthworks.
- Prior to construction, an additional groundwater monitoring event should be conducted to confirm groundwater results. The groundwater monitoring wells are to be surveyed to provide indicative groundwater flow direction.
- Any material being imported to the site (i.e. for landscaping purposes) should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM.
- Preparation of a final site validation report by a suitably qualified environmental consultant, certifying the site suitability of soils and groundwater for future proposed land uses.

1. INTRODUCTION

1.1 Background and Purpose

El Australia (El) was engaged by Convertia Pty Ltd ('the client'), to conduct an Additional Site Investigation (ASI) of the land parcel known as Site 1, 2-6 Pilgrim Avenue & 11-13 Albert Road, Strathfield NSW ('the site').

The site is located within the local government area (LGA) of Strathfield Council, as shown in **Appendix A**, **Figure 1**. The site comprises five cadastral allotments, identified as SP8785, Lot 8 & 9 DP15917, Lot A & B DP100558, covering approximately 2,868 m² in area, as depicted in **Appendix A**, **Figure 2**. During the investigation, the site was occupied by single residential dwellings and flats. This investigation applies to Site 1 only. Future long term redevelopment would also encompass Site 2, 9 Albert Road, Strathfield NSW (currently occupied by a service station) which is outside the scope of works for this investigation.

The purpose of this investigation was to determine the environmental condition (contamination status) of the site, in support of a development application (DA2020/256) to Strathfield Council. This ASI enables the developer to meet obligations under the *State Environmental Planning Policy (SEPP 55) – Remediation of Land*, for the assessment and management of contaminated soil and groundwater, should this be identified. It follows on from a previous (preliminary) investigation completed by EI, which assessed both Site 1 and Site 2:

 EI (2018) Preliminary Site Investigation with Limited Sampling, 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW (Ref. E23668.E01_Rev1, dated 7 February 2018).

1.2 Proposed Development

Based on the proposed development plans (Ref. Kennedy Associates Architects, Job No. 1361, dated 17 June 2021 attached in **Appendix C**), Site 1 has been designated for the construction of 2 multi-storey mixed-use residential buildings, overlying 4 levels of basement car parking occupying almost the entire site. The lowest basement level will have a finished floor level (FFL) of RL -2.55 mAHD. A small setback area is proposed at the perimeter along the northern site boundary, and it is understood that this set back will likely be paved.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during this ASI:

- Contaminated Land Management Act 1997 (the CLM Act 1997);
- Protection of the Environment Operations Act 1997 (the POEO Act 1997);
- Environmental Planning and Assessment Act 1979 (the EP&A Act 1997);
- State Environmental Planning Policy 55 Remediation of Land (SEPP 55);
- Strathfield Local Environmental Plan 2012;
- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Guidelines for the NSW Site Auditor Scheme;
- EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines; and

• NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater and Schedule B(2) Guideline on Site Characterisation, in the National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999.

1.4 Project Objectives

The objectives of this investigation were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- Assess the degree of any soil and groundwater contamination, by means of intrusive sampling and laboratory analysis for the relevant potential contaminants;
- Provide a conclusion regarding suitability of the site for proposed use; and
- Make recommendations for the appropriate management of any impacted soils and/or groundwater, should site contamination be confirmed.

1.5 Scope of Works

To achieve the above objectives, the following scope of works was completed:

Desktop Study

- A review of relevant geological, hydrogeological and soil landscape maps for the project area; and
- A review of the previous environmental investigation report.

Fieldwork and Laboratory Analysis

- Preparation of a Work, Health, Safety and Environmental Plan;
- A review of existing underground services on-site, utilising *Dial-Before-You-Dig* plans;
- A site walkover inspection;
- Drilling of boreholes at 4 targeted locations onsite (BH201, BH202, BH203M, BH204M);
- Installation of 2 groundwater monitoring bores (BH203M & BH204M), within the proposed redevelopment area targeting the boundary with the adjoining service station;
- Multiple level soil sampling within fill and natural soils at each of the test bores;
- Completion of one groundwater monitoring event (GME), with measurement of standing water levels (SWLs) and representative sample collection at each of the installed wells; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters, as determined from the desktop study and field observations.

Data Analysis and Reporting

This ASI report documents all desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. It also provides a record of observations made during the site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic condition of the land.

2. SITE DESCRIPTION

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in **Table 2-1**. The site locality and assessment area are illustrated in **Appendix A**, **Figures 1** and **2**.

Table 2-1 Site Identification

Attribute	Description	
Street Address	2-6 Pilgrim Avenue & 11-13 Albert Road, Strathfield NSW	
Location Description	The site is bound by a railway line to the north, Pilgrim Avenue to the west, Albert Road to the south and Site 2 phase of the development to the east (currently a Shell Coles Express service station).	
Site Coordinates	 Coordinates Northern-eastern corner of site (GDA2020-MGA56): Easting: 323522.773; Northing: 6250584.504 (Source: <u>http://maps.six.nsw.gov.au</u>) 	
Site Area	2,868 m ²	
Lots and DPs	SP8785, Lot 8 & 9 DP15917, Lot A & B DP100558	
State Survey Marks	 Three State Survey (SS) marks are situated in close proximity to the site: SS118033 (Approx. 36m south of site on the corner of Raw Square and Everton Road); SS118032 (Approx. 125m north-east of site on the roundabout of Raw Square and Everton Road); and SS44174 (Approx. 89m west of site on Elva Street). (Source: <u>http://maps.six.nsw.gov.au</u>) 	
LGA	Strathfield Council	
Parish	Concord	
County	Cumberland	
Current Zoning	B4 – Mixed Use Zone (Strathfield Local Environmental Plan 2012)	

2.2 Surrounding Land Use

The site is situated within an area of mixed use, as described in **Table 2-2**. The local sensitive receptors within close proximity to the site are also identified in this table.

Table 2-2 Surrounding Land Use	Table 2-2	Surrounding	Land	Uses
--------------------------------	-----------	-------------	------	------

Direction	Land Use Description	Sensitive Receptors (distance from site)
North	Railway Corridor, followed by Leicester Avenue	-
South	Albert Road, followed by residential dwellings and Strathfield Plaza	Low density residential dwellings (35 m South) Strathfield Plaza (200 m south east)

Direction	Land Use Description	Sensitive Receptors (distance from site)
East	Site 2 phase of the development (currently a Shell Coles Express service station), followed by Raw Square, multi-storey mixed-use apartment building and Strathfield Train Station	Multi-storey mixed-use apartment dwelling (40 m east)
West	Pilgrim Avenue, followed by residential apartment dwellings	Two-storey residential apartment dwellings (25 m west) Powells Creek (140 m north west) Laker Reserve (150 m north west)

2.3 Regional Setting

The topography, geology and soil landscape information is summarised in Table 2-3.

Attribute	Description
Topography	The site topography consists of gently undulating rises on Wianamatta Group shales and Hawkesbury shale with local relief to 30 m and slopes are usually <5%. Crests and ridges are broad (200-600 m) and rounded with convex upper slopes grading into concave lower slopes. The site sits along a ridgeline at approximately 10 mAHD (Source:
	http://maps.six.nsw.gov.au).
Site Drainage	Stormwater is expected to be collected in stormwater pits and piped to the municipal collection system, which likely flows towards Powells Creek, approx. 140 m north-west of the site.
Regional Geology	The sites regional geology lies within the Wianamatta Group. It comprises Ashfield Shale which consists of laminate and dark grey siltstone and Bringelly Shale consisting of shale, with occasional calcareous claystone, laminate and coal. Ref. 1:100 000 scale Geological Series Sheet 9130 (Sydney).
Soil Landscape	The Soil Conservation Service of NSW Soil and Land Information of the Sydney 1:100,000 Sheet (Chapman and Murphy, 2002) indicates that the northern portion of the site overlies a Blacktown (bt) residual landscape and the southern portion overlies a Disturbed Terrain (xx) Landscape.
Acid Sulfate Soil (ASS) Risk	The Strathfield LEP 2012 Acid Sulfate Soil Map (Sheet ASS_005) indicates that the site lies within an area classified as Class 5 acid sulfate soils. Class 5 is classified as works within 500 m of adjacent Class 1, 2, 3 or 4 land that is below 5 m Australian Height Datum (AHD) and by which the water table is likely to be lowered below 1 mAHD on adjacent Class 1, 2, 3 or 4 land.
	With reference to the 1:25 000 scale Prospect-Parramatta River Acid Sulfate Soil Risk Map – Edition Two (Ref. Murphy, 1997), the subject land lies within the map class description of No Known Occurrence. In such cases, acid sulfate soils (ASS) are not known or expected to occur and "land management activities are not likely to be affected by ASS materials".
Nearest Surface Water Feature	Powells Creek, approx. 140 m north-west of the site.

Table 2-3 Regional Setting

Attribute	Description
Groundwater Flow Direction	The site sits on a ridgeline, groundwater is expected to flow north east, towards a tributary of Parramatta River (1.5 km from the site).

2.4 Site Walkover Inspection

Observations were recorded during a walkover inspection of the site on 17 June 2021. These are summarised below and photographs taken during the inspection are presented in **Appendix D**.

- The current site use consists of three residential unit blocks and two individual residential dwellings;
- The site consists of overgrown green vegetation (including weeds) and patchy grasses with bare soil patches present across all properties;
- All residential properties displayed concrete driveways in poor conditions with cracking and deformation evident;
- There was no evidence of underground storage tanks (USTs) or underground petroleum storage systems (UPSS) on site. However, a Shells Coles Express service station was operating directly adjacent to the east; and
- No other suspicious odours or evidence of gross contamination was observed at the site.

3. PREVIOUS INVESTIGATION

A previous (preliminary) investigation had been completed for both Site 1 and Site 2, which was documented under the following report:

 EI (2018) Preliminary Site Investigation with Limited Sampling, 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW (Ref. E23668.E01_Rev1, dated 7 February 2018).

A summary of the investigation is provided in Table 3-1.

Table 3-1 Summary of Previous Investigation

Project Task	Findings
Objectives	 To evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources; and To investigate potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants of potential concern.
Findings	 The report covered both Site 1 and Site 2, with a total area of approximately 4,885m²; Historical records indicate residential and commercial use since at least the early 1930s. The residential apartment dwellings appear to be evident on site from at least 1943, with the service station occupying the eastern side from the mid-1990s. Site use has remained the same since 1990s to present; The site and surrounding properties are not reported as being subject to regulation in relation to environmental impacts, as documented in the EPA public registers; Verbal confirmation of SafeWork NSW records and visual evidence indicated UPSS's to be located at the service station (9 Albert Road);
	 A site walkover inspection identified the sites current uses consisted of residential and commercial purposes, potential asbestos containing material (ACM) was noted within some of the buildings materials, illegal dumping had previously occurred on site and strong effluent odour and water leakage (likely burst sewer pipe) was evident along the driveway at 11-13 Albert Road;
	 Soil sampling and analysis was conducted at five test bore locations at Site 1. No boreholes were drilled at the service station (Site 2, 9 Albert Road, Strathfield NSW). The sub-surface layers comprised fill and residual soils overlying clay and weathered shale;
	Results of soil samples collected from soil test boreholes indicated the following:
	 Metals were reported below the adopted human health criteria HIL B, with the exception of lead in BH102_0.3-0.4 (2,800 mg/kg).
	 Minor metal exceedances of ecological based criteria were reported, however these were not considered to be of concern.
	 TRH, BTEX and PAH concentrations were all below the corresponding NEPM 2013 health-based criteria;
	 No pesticides (OCPs, OPPs) or PCBs were reported; and
	 Asbestos was not identified in laboratory analysed soil samples.
	 Groundwater was not encountered by EI during the investigation due to refusal in weathered shale. Three shallow groundwater monitoring wells were installed; however they were all reported dry at the time of sampling. Groundwater flow direction was not calculated during this investigation, however, groundwater is anticipated to flow north-east towards Parramatta River; and
	The following data gaps, remain that require closure:
	 Further intrusive investigation of the site to satisfy the sampling density requirements of EPA (1995);
	 The quality of soils beneath building structure areas of the site not assessed. Provided that the majority of the site is to be bulk excavated for the basement, the supplementary

Project Task	Findings
	investigation may be carried out as part of the waste classification for excavated materials;
	 The condition of soil and groundwater in the immediate vicinity of current and historical UPSS areas, including bowser islands, fill points, and fuel lines;
	 The quality of groundwater onsite and down-hydraulic gradient of the service station site, including background groundwater quality migrating onto the site;
	 Confirmation of groundwater flow direction by survey of groundwater monitoring wells by a licensed surveyor;
	 Potential presence of hazardous materials present within the existing structures; and
	 The suitability of retained deep soils to be used for landscaping purposes on the northern perimeter of the site.
	Based on the findings from this PSI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations, El conclude that in light of the site access restrictions and constraints, several data gaps remain that will require closure to satisfactorily characterise the fill soils. In view of the proposed development scope, and currently available information, El consider that the site can be made suitable for the proposed land use, provided recommendations are implemented at a future development application stage. It should be noted that this is not required at the planning proposal stage.
Recommendat ion	 Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition;
	 Review of available environmental reports previously prepared for the service station site;
	Preparation and implementation of a Remedial Action Plan (RAP), which should:
	 Design supplementary investigations to close the data gaps identified during this investigation;
	 Outline the remediation requirements for UPSS decommissioning, and remediation and validation activities in accordance with the POEO (UPSS) Regulation 2014 and associated guidance documents, and other contamination that may be identified during data gap closure investigations;
	 Provide the requirements and procedure for waste classification assessment, in order to enable classification of site soils to be excavated and disposed off-site during the proposed basement excavation, in accordance with the Waste Classification Guidelines (EPA, 2014); and
	 Provide a SAQP for the validation of remediation activities performed on-site.
	 Undertake supplementary investigations, and subsequent remediation and validation works for the site, as outlined in the RAP. EI note that due to current site constrains, the additional investigations and remediation works may be conducted after site demolition when access to areas of environmental concern is made available;
	 Any material being removed from site (including virgin excavated natural materials (VENM)) should be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
	 Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
	 Preparation of a final site validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

Page | 8

4. CONCEPTUAL SITE MODEL

In accordance with NEPC (2013) *Schedule B2 – Guideline on Site Characterisation*, El developed a CSM that assessed plausible linkages between potential contamination sources, migration pathways and human and environmental receptors.

4.1 Summary of Site History

Based on the historical information (EI, 2018), the site has been used for residential purposes from at least 1943. The adjacent service station occupied Site 2, 9 Albert Road from the mid-1990s.

4.2 Subsurface Conditions

Based on the historical information (EI, 2018), and excluding any surface paving, the subsurface conditions of the site were generalised as a layer of silt / silty clay filling (ranging between 0.5-2.5m BGL), overlying natural silty clay and shale bedrock.

4.3 Potential Contamination Sources

The potential contamination sources were as follows:

- Unknown type and concentration of contaminants within imported fill soils beneath site structures and in fill areas;
- Weathering of existing building structures (i.e. painted surfaces, metallic structures, cement-fibre sheeting, etc.);
- Hazardous materials, including potential asbestos-containing materials (ACM) in existing buildings onsite;
- Possible impacts historic use of pesticides beneath site structures and in garden areas;
- Impacts from uncontrolled demolition of historic site structures;
- Migration of contamination onto site from adjacent Site 2 service station property (9 Albert Road, Strathfield).

4.4 Emerging Contaminants

Per- and Poly- Fluoroalkyl Substances (PFAS)

EPA (2017) requires that PFAS are considered when investigating land contamination. The probability of PFAS occurrence, which was based on considerations outlined in the *PFAS National Environmental Management Plan* (NEMP 2020), is reviewed in **Table 4-1**. In this instance, the potential for PFAS to be present on-site was low.

Table 4-1PFAS Decision Tree

Preliminary Screening	Probability of Occurrence ¹
Has an activity listed in NEMP (2020) ² as being associated with PFAS contamination occurred on-site? If so, list activity.	L
Has an activity listed in NEMP (2020) ² as being associated with PFAS contamination occurred up-gradient or adjacent to the site? If so, list activity.	L
Did fire training involving the use of suppressants occur on-site between 1970 and 2010?	L

Preliminary Screening	Probability of Occurrence ¹
Did fire training occur up-gradient or adjacent to the site between 1970 and 2010? 3	L
Have "fuel" fires ever occurred on-site between 1970 and 2010? (e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks?)	L
Have PFAS been used in manufacturing or stored on-site? ⁴	L
Could PFAS have been imported to the site in fill materials from a site with an activity listed in NEMP (2020)?	L
Could PFAS-contaminated groundwater or run-off have migrated on to the site?	L
Is the site or adjacent sites listed in the NSW EPA PFAS Investigation Program? $^{\rm 5}$	L
If the probability is medium or high in any of the rows, does the site analytical suite need to be optimised to include preliminary sampling and testing for PFAS in soil (including ASLP testing) and waters?	No

Note 1 Probability: L – low (all necessary documentation has been reviewed and there is no recorded instance or compelling rationale); M – moderate (all necessary documentation has been reviewed and there is potential evidence of a recorded instance with compelling rationale); H – high (all necessary documentation has been reviewed and there is evidence of a recorded instance with compelling rationale).

Note 2 Activities listed in Appendix B of NEMP (2020).

Note 3 Runoff from up-gradient PFAS use may impact surface water, soil, sediment and groundwater.

Note 4 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of nonstick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam. (https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas)

Note 5 Refer to https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program.

Emerging Chemicals

The EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the *Environmentally Hazardous Chemicals Act 1985*, to control chemicals of concern and limit their potential impact on the environment. Considerations for chemicals controlled by CCOs, and other potential emerging chemicals, are outlined in **Table 4-2**. In this instance, the potential for an emerging chemical of concern to be present on-site was limited to the application of organic pesticides (around building footings and perimeters).

 Table 4-2
 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Decision
Were aluminium smelter wastes used or stored on site (CCO, 1986)?	No
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the site? $^{\rm 1}$	No
Were organotin products (CCO, 1989) used or stored on site? 2	No
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? $^{\rm 3}$	No
Were scheduled chemical or wastes (CCO, 2004) used or stored? ⁴	Potential for organic pesticides to have been used for termite and other pest control
Are other emerging chemicals suspected? 5	No
If Yes to any questions, has site sampling suite been optimised to include sampling for these chemicals of concern?	Yes

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the site.

Note 2 From anti-fouling paints used or removed at boat and ship yards and marinas.

Note 3 From older transformer oils and electrical capacitors

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging (e.g. 1,4 dioxane; associated with some CVOC).

4.5 Potential Contaminants

The primary contaminants of potential concern (COPCs) at the site were considered to be:

- Soil metals (met), total recoverable hydrocarbons (TRH), monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl-benzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAH), organochlorine and organophosphorus pesticides (OCP/ OPP), polychlorinated biphenyls (PCB) and asbestos.
- Groundwater HM, TRH, BTEX, PAHs, phenols and VOCs.

4.6 Exposure Pathways and Receptors

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised in **Table 4-3**.

Impacted Media	COPC	Transport Mechanism	Exposure Pathway	Potential Receptor	Potential Risk of Complete Exposure Pathway
Soil	Metals; TRH; BTEX; PAH; OCP/OPP PCB; and Asbestos	Leaching of contaminants from impacted soils to groundwater; Physical erosion and wind mobilisation during ground disturbance activities (e.g. excavation and earthmoving); and Atmospheric dispersion.	Dermal contact; Ingestion; Inhalation; and Biota Uptake.	Site Workers during construction; and Future site users (residents) and maintenance personnel.	L - M
Groundwater	Metals; TRH; BTEX; PAH; VOC; and Phenols.	Interception of water table during excavation; Potential seepage into deep basement intercepting water table (both on site and off- site); Volatilisation of contamination from groundwater to indoor air spaces; and Migration of dissolved phase impacts in groundwater.	Dermal contact; Ingestion; Inhalation of vapours	Site Workers during construction; Future site users (residents) and maintenance personnel; Aquatic ecosystems; Recreational water users.	L - M
Building Materials	Lead; PCB; SMF; and Asbestos.	Release of hazardous materials during uncontrolled demolition of building fabrics.	Ingestion; Dermal contact; and Inhalation of	Demolition workers; and Construction and	L - M

 Table 4-3
 Conceptual Site Model

Impacted Media	COPC	Transport Mechanism	Exposure Pathway	Potential Receptor	Potential Risk of Complete Exposure Pathway
			airborne contaminants.	maintenance workers.	

4.7 Data Gap

Based on the CSM derived for the site and the qualitative assessment of risks, EI considered a programme of intrusive investigation of soil and groundwater was warranted to conduct targeted and systematic sampling at locations of known, potential sources of contamination.

5. METHODOLOGY

5.1 Sampling and Analysis Quality Plan (SAQP)

The SAQP ensures that the data collected during environmental works are representative and provide a robust basis for assessment decisions. The SAQP for this ASI included the following:

- Data quality objectives, including a summary of the objectives of the ASI;
- Investigation methodology, including the media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling procedures (including sample handling, preservation and storage);
- Field screening methods;
- Laboratory analysis methods; and
- Analytical quality assurance / quality control (QA/QC).

5.2 Data Quality Objectives

In accordance with the NEPC (2013) Schedule B2 Guideline on Site Characterisation, the USEPA (2006) Data Quality Assessment and EPA (2017) Guidelines for the NSW Site Auditor Scheme, data quality objectives (DQO) were developed by the El investigation team, following the NEPM- / EPA- endorsed, seven step process (**Table 5-1**). In doing so, the appropriate levels of data quantity and quality needed for the specific requirements of the project were established.

Table 5-1 Summary of Project Data Quality Objectives

DQO Step	Details
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model.	Site redevelopment involves the demolition of existing structures, followed by the construction of 2 multi-storey mixed-use residential buildings, overlying 4 levels of basement car parking, as outlined in Section 1.2 . Based on the proposed land use, the NEPC (2013) setting of residential with minimal opportunities for soil access applies. Previous investigation by EI (2018) identified the potential for soil and/or groundwater contamination due to various possible sources, as listed in Section 4.3 . A CSM has been developed (Table 4-3). The findings of the ASI must provide supportive information on the environmental condition of the site, to determine suitability for the proposed redevelopment.
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them.	 Based on the objectives outlined in Section 1.4, the decisions that need to be made were: Has the nature, extent and source of any soil and/or groundwater impacts onsite been defined? What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the suitability of the site to be determined, or selection and design of an appropriate remedial strategy, if necessary? If the data does not provide sufficient information, what data gaps require closure to enable the suitability of the site to be determined, or selection and design of an appropriate remedial strategy?
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements.	 Inputs to the decision making process included: The proposed development and land use; Review of the previous site investigation; National and NSW EPA guidelines made or approved under the <i>NSW Contaminated Land Management Act 1997</i>; Observations during / from soil and groundwater sampling; and Laboratory analytical results for the selected soil and groundwater samples. At completion of the ASI, a decision is required regarding the suitability of the site for the proposed redevelopment, or if additional investigation is required to confirm that the site is suitable for that development or if remediation is required to make the site suitable.
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision.	Lateral – The proposed development area, as shown on Figure 2 , Appendix A ; Vertical – Investigations were advanced to the depth of natural soils or rock; Temporal – The results were valid for the day samples were collected and remain so as long as no changes occur in regards to site use, and contamination (if present) does not migrate onto the site from off-site sources.

DQO Step	Details
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions.	 The decision rules for the investigation were: If the concentrations of contaminants in the soil and/or groundwater data exceed the adopted criteria, then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2.
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data.	 Specific limits for this project were in accordance with National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This included the following points to quantify tolerable limits: The null hypothesis for the investigation was that the 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed relevant residential with minimal access to soil land use criteria across the site. Acceptance of site suitability was based on the probability that: The 95% UCL of the mean of the data satisfied the given site criteria (thus, a limit on the decision error was 5% that a conclusive statement may be incorrect); The standard deviation of the results was less than 50% of the relevant remediation acceptance criterion; and No single result exceeded the remediation acceptance criterion by 250% or more. Soil and groundwater concentrations for the potential chemicals that were below investigation criteria made or approved by the NSW EPA were treated as acceptable and indicative of suitability for the proposed land use(s). Samples to determine the presence of asbestos were collected from boreholes at the site. If contaminant concentrations exceeded the adopted criteria, further investigation was considered prudent. If no contamination was detected, no further action was required.
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs.	 In order to identify the most resource-effective sampling and analysis design and satisfy the DQOs: Soil sampling was conducted at 4 locations at targeted parts of the site. An upper soil profile sample was collected at each borehole location and tested for the COPC, to assess the conditions of the fill layer, and impacts from activities at ground level. Further discrete, natural samples were analysed for primary metals, TRH, BTEX and PAH. Samples were selected on field observations (including visual and olfactory evidence), giving consideration to the subsurface stratigraphy. Two groundwater monitoring wells were installed and gauged to assess groundwater quality at the site. A GME was completed, with laboratory analysis of representative samples for COPCs. Review of the results was undertaken to determine if further sampling was warranted.

5.3 Data Quality Indicators

To ensure that the investigation data were of an acceptable quality, they were assessed against the quality indicators outlined in **Table 5-2**. Assessment of data quality is presented in **Section 6** and **Appendix I**.

Table 5-2 Data Quality Indicators

QA/QC Component	Data Quality Indicator(s)
Precision A quantitative measure of the variability (or reproducibility) of data	 Data precision was assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision was deemed acceptable if RPDs were found to be less than 30%. RPDs that exceeded this range were considered acceptable where: Results were less than 10 times the limits of reporting (LOR); Results were less than 20 times the LOR and the RPD was less than 50%; or
	 Heterogeneous materials or volatile compounds were encountered.
Accuracy A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy was assessed through the analysis of: Split field duplicate sample sets; Field and method blanks, analysed for the analytes targeted in the primary samples; Matrix spike and matrix spike duplicate sample sets; and Laboratory control samples.
Representativeness The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory were representative of conditions encountered in the field, the following measures were taken: Blank samples run in parallel with field samples, to confirm there were no unacceptable instances of laboratory artefacts; Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples were generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage, and preservation techniques was assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the ASI were evaluated as complete upon confirmation that: Standard operating procedures (SOPs) for sampling protocols were adhered to; and Copies of all chain of custody (COC) documentation were included and found to be properly completed. It could therefore be considered whether the proportion of "useable data" generated in the data collection activities was sufficient for the purposes of the land use assessment.
Comparability The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Data sets from separate sampling episodes were required and issues of comparability were reduced through adherence to SOPs and regulator- endorsed or published guidelines and standards on each data gathering activity. In addition the data were collected by experienced samplers and NATA- accredited laboratory methodologies will be employed.

5.4 Sampling Rationale

With reference to the CSM described in **Section 4**, soil and groundwater sampling works were planned in accordance with the following rationale:

- Sampling fill and natural soils from 4 borehole locations across accessible and targeted parts of the site;
- Completion of a single groundwater monitoring even (GME), at two installed monitoring wells, to characterise local groundwater conditions. Monitoring wells were installed at targeted locations at the boundary of the service station (Site 2); and
- Laboratory analysis of representative soil and groundwater samples for the potential contaminants.

5.5 Assessment Criteria

The assessment criteria adopted for this ASI are outlined in **Table 5-3**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenarios that are expected for various parts of the site, the likely exposure pathways, and the identified potential receptors.

Medium	Guidelines	Rationale
Soil	NEPC (2013) HILs, HSLs and Management Limits for TRH	Soil Health-based Investigation Levels (HILs) NEPC (2013) <i>HIL-B</i> thresholds for residential settings. Soil Health-based Screening Levels (HSLs) NEPC (2013) <i>HSL-D</i> thresholds for vapour intrusion at commercial and industrial sites were applied to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene (per Section 2.4.8 Schedule B1 NEPC 2013). Preliminary screening for asbestos was based on the laboratory
		limit of reporting (LOR) of <0.01 w/w%, whereby asbestos is reported to be present or absent in the analysed sample.
		Management Limits for Petroleum Hydrocarbons Where the HSLs and ESLs for petroleum hydrocarbons were exceeded, sample results were also assessed against the NEPC (2013) <i>Management Limits</i> for the F1-F4 TRH fractions, to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards and adverse effects on buried infrastructure.
Groundwater	ANZG (2018) GILs for Fresh Waters and NEPC (2013) Groundwater HSLs	Groundwater Investigation Levels (GILs) for Fresh Waters ANZG (2018) provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative analyte (mercury). Health-based Screening Levels (HSLs) The NEPC (2013) groundwater HSLs for vapour intrusion were used to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The <i>HSL-D</i> thresholds for commercial and industrial settings were applied.

Table 5-5 Adopted investigation Levels for Son and Groundwate	Table 5-3	Adopted Investigation	Levels for Soi	il and Groundwater
---	-----------	-----------------------	----------------	--------------------

5.6 Soil Sampling

The soil sampling works conducted at the site are described in **Table 5-4**. Sampling locations are illustrated in **Figure 2**.

Table 5-4 Summary of Soil Sampling Methodology

Activity/Item	Details
Fieldwork	Intrusive soil investigations were conducted on 17 and 18 June 2021, and comprised 4 borehole locations.
Investigation Method	Test bores BH201 and BH202 and BH107M were drilled using solid flight augers. Wells BH203M and BH204M were also drilled using solid flight augers in addition to wash boring and air drilling.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Australian Standard (AS) 1726-2017. Borehole logs are presented in Appendix E .
Soil Sampling	Soil samples were collected using a dry grab method (the sampler wearing unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent- rinsed glass jars, or snap-lock, plastic bags. Blind and split field duplicates were separated from the primary samples and placed
	At each location, aliquots of soil were placed into separate zip-lock bags for laboratory asbestos analysis and in-field VOC screening by a photo-ionisation detector (PID).
Soil Vapour Screening	Screening for VOC in soil headspace samples was conducted using a pre-calibrated PID with a 10.6mV ionisation lamp.
Decontamination	Nitrile sampling gloves were replaced between each sampling location. Augers were cleaned of all residual soil between each borehole location.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Sample Preservation and Transport	Samples were stored in a chilled chest (with frozen ice packs), whilst on-site and in transit to the contracted laboratories.
	Soil samples were transported to Eurofins (the primary laboratory) under strict chain- of-custody (COC) conditions. Signed COC certificates and sample receipt advice (SRA) were provided by Eurofins for confirmation purposes (Appendix G).
	Split (inter-laboratory) soil field duplicates were submitted to Envirolab Services Pty Ltd (Envirolab; the secondary laboratory) under strict COC conditions. Signed COC forms and SRA were provided by Envirolab for confirmation purposes (Appendix G).
Laboratory Analysis and Quality Control	Soil samples were analysed by Eurofins and Envirolab for the COPC. All samples were analysed within the required holding period, as documented in the corresponding laboratory reports (Appendix H).
	In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised one blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared trip spike soil sample and a laboratory-prepared trip blank soil sample, all analysed by SGS.

The groundwater sampling works are described in **Table 5-5**. The monitoring well locations are illustrated in **Figure 2**.

Table 5-5 Summary of Groundwater Sampling Methodology

Activity/Item	Details
Fieldwork	Groundwater monitoring well BH203M was installed on 18 June 2021 and BH204M was installed on 17 June 2021. The wells were subsequently developed following installation to remove sediment introduced during drilling. Water level gauging, well purging, field testing and groundwater sampling were conducted on 21 June 2021.
Well Construction	 Two bores were converted to groundwater monitoring wells as follows: BH203M: installed to a depth of 13.1m BGL (screened from 7.1 - 13.1m BGL); BH204M: installed to a depth of 13.0m BGL (screened from 10.0 - 13.0m BGL). Well construction was in general accordance with the standards described in NUDLC (2012) and involved the following: 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing; Base and top of each well was sealed with a uPVC cap; Annular, graded sand filter was used to approximately 500 mm above top of screen interval; Granular bentonite was applied above annular filter to seal the screened interval; Surface completion comprised of a -0.5 m plastic J-cap closing the well, with a gatic cover at ground level.
Well Development	Well development was conducted for each well after installation. Each well was purged three times the well volume or until dry.
Well Gauging	Monitoring wells were gauged to determine standing water level (SWL) (depth to groundwater) prior to well purging at the commencement of the GME on 17 March 2021. Gauging was conducted with a water/oil interface probe.
Well Purging and Field Testing	The measurement of water quality parameters was conducted repeatedly during purging and the details were recorded onto field data sheets, once water quality parameters stabilised. Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC) and pH of the purged water were also recorded during well purging. Purged water volumes removed from each well and field test results are summarised in Table 7-3 .
Groundwater Sampling	Groundwater samples were collected by a micro-purge system. Water was continuously measured for four parameters (Temperature, EC, Redox, DO, pH). Once three consecutive field measurements were recorded for purged water to within \pm 10% for DO, \pm 3% for EC, \pm 0.2 units for pH, \pm 0.2° for temperature and \pm 20 mV for redox, this was considered to indicate that representative groundwater quality had been achieved and final physio-chemical measurements were recorded. Groundwater samples were then collected from the micro-purge sampling pump discharge point.
Decontamination Procedure	The water level probe and MicroPurge kit were washed in a solution of potable water and <i>Decon 90</i> and then rinsed with potable water.
Sample Preservation	 Sample containers were supplied by the laboratory with the following preservatives: one, 1 litre amber glass, acid-washed and solvent-rinsed bottle; two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1mL). Samples for metals analysis were field-filtered using 0.45 µm pore-size membranes. All containers were filled with sample to the brim then capped and stored in insulated chests (containing ice bricks), until completion of the fieldwork and during sample transit to the laboratory.
Sample Transport	After sampling, the ice brick filled chests were transported to Eurofins using strict COC procedures. SRA was provided by the laboratory to document sample condition upon receipt. Copies of the SRA and COC certificates are presented in Appendix G . A split (inter-laboratory) field duplicate was submitted to Envirolab under strict COC conditions. Signed COC certificates and sample receipt documentation were provided

Activity/Item	Details			
	by Envirolab for confirmation purposes (Appendix G).			
Laboratory Analysis and Quality Control	Groundwater samples were analysed by Eurofins (primary laboratory) and Envirolab (secondary laboratory) for the COPCs. All samples were analysed within the required holding period, as documented in the corresponding laboratory reports (Appendix H). In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised a blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared, trip spike water sample and a laboratory-prepared, trip blank water sample, all tested by Eurofins.			

6. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental results to determine if they meet the objectives of the project (USEPA, 2006). For this ASI, data quality assessment involved an evaluation of the compliance of the field (sampling) and laboratory procedures with established protocols, as well as the accuracy and precision of the associated results from the quality control measures. The findings are summarised in **Table 6-1** and discussed in detail in **Appendix I**.

In summary, the overall quality of the analytical data from this ASI was considered to be of an acceptable standard for interpretive use and preparation of an updated CSM.

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)	
Preliminaries	DQO established	Yes	See DQO/DQI, Section 5.2 and 5.3	
Field work	Suitable documentation of fieldwork observations including borehole logs, field notes.	Yes	See Appendix E and F	
Sampling plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See sample rationale Section 5.4	
	All media sampled and duplicates collected	Yes	See Appendix G	
	Use of approved and appropriate sampling methods (soil, groundwater)	Part	Primary sample BH201_4.1-4.3 was not tested. A comparison has been made between the duplicate and triplicate. See Section 5.6 and 5.7	
	Selection of soil samples according to field PID readings (where VOCs are present)	Part	Hydrocarbon odour was noted during drilling in shale bedrock at 10mBGL at BH204M. The odorous shale bedrock was not sampled and a PID reading was not taken. See Section 7 and Appendix E	
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See Section 5.6 and 5.7	
	Appropriate field rinsate and trip blanks taken	Yes	See Appendix G	
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See Appendix G	
Laboratory	Sample holding times within acceptable limits	Yes	See laboratory QA/QC, Appendix H, I, J	
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See laboratory QA/QC, Appendix H, I, J	
	LOR/PQL low enough to meet adopted criteria	Yes	See laboratory QA/QC,	

Table 6-1 Quality Control Process

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)	
			Appendix H, I, J	
	Laboratory blanks	Yes	See laboratory QA/QC, Appendix H, I, J	
	Laboratory duplicates	Yes	See laboratory QA/QC, Appendix H, I, J	
	Matrix spike/matrix spike duplicates	Yes	See laboratory QA/QC, Appendix H, I, J	
	Surrogates (or System Monitoring Compounds)	Yes	See laboratory QA/QC, Appendix H, I, J	
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD)	Yes	See laboratory QA/QC, Appendix H, I, J	
	Checking for the occurrence of apparently unusual or anomalous results (e.g. laboratory results that appear to be inconsistent with field observations or measurements)	Yes	See Appendix B, E, F	
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes.	Yes	See Document Control	

7. RESULTS

7.1 Soil Field Results

7.1.1 Sub-Surface Conditions

The general site lithology encountered during the additional soil investigation was a layer of gravelly silt / silty clay filling (various depths averaging 0.35 m thickness), overlying natural, silty clay and shale bedrock. More details are provided in **Table 7-1** and borehole logs are presented in **Appendix E**. Subsurface conditions were consistent with the previous investigation however an average of 1.3m of fill was encountered in EI (2018).

Table 7-1 Generalised Sub-Surface Profile (mBGL)

Layer	Description	Minimum and Maximum Depth
Hardstand	Concrete pavement	0.0 – 0.15
Fill	Silty CLAY; low to medium plasticity, brown, dark grey to black, with trace gravels. Gravelly SILT; brown mottled red to grey, trace sand and gravels.	0.0 – 0.7
Natural	Silty CLAY; low to high plasticity, grey mottled red, brown mottled grey.	0.15 - 5.5
Bedrock	SHALE; weathered, dark grey.	4.1 – 13.1+

Note 1 + Termination depth of deepest borehole.

7.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.3-5.5m BGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- Hydrocarbon odour was noted in shale bedrock at 10mBGL at BH204M;
- No fragments of potential asbestos containing materials (ACM) were observed in any of the drilled/examined soil;
- Brick fragments were observed in fill at 0.15 1.4mBGL in BH202; and
- VOC concentrations from collected soil headspace samples were low, ranging between 0.3-5.5ppm (Appendix E).

7.2 Groundwater Field Results

7.2.1 Monitoring Well Construction

Groundwater monitoring well BH203M was installed on 18 June 2021 and BH204M was installed on 17 June 2021. Construction details for the installed groundwater monitoring wells are summarised in **Table 7-2**.

Table 7-2 Monitoring Well Construction Details

Well ID	Well Depth (m BGL)	Well Stick-up (m)	Screen Interval (m BGL)	Lithology Screened
BH203M	13.1	-0.12	7.1 - 13.1	Shale
BH204M	13.0	-0.09	10.0 - 13.0	Shale

7.2.2 Field Observations

A GME was conducted on 21 June 2021. Field data was recorded before sampling, as presented in **Table 7-3**. Field data sheets and calibration certificate for the water quality meter used are attached in **Appendix F**. Samples were then evaluated on the basis of odour and visual signs of contamination, with the following observations noted:

- Groundwater in the monitoring wells was light grey to brown in colour, with medium to high turbidity;
- No olfactory or visual evidence of contamination was detected in the monitoring wells during sampling;
- No sheens were observed on the sampled groundwater; and
- The observed standing water levels (SWL) were 7.39 mBGL and 8.14m BGL.

Well	SWL (m BGL)	DO (mg/L)	рН	EC (μS/cm)	Т (°С)	Redox ¹ (mV)
BH203M	7.39	0.17	6.46	5971	20.55	251
BH204M	8.14	0.69	6.6	10.66	19.79	295

Table 7-3 Groundwater Field Data

Notes:

SWL - standing water level

¹ Field Redox (mV) readings adjusted to Standard Hydrogen Electrode (SHE) by adding field electrode potential (205mV). DO – Dissolved Oxygen in units of milligrams per litre (mg/L)

EC - groundwater electrical conductivity as measured onsite using portable EC meter

mBGL – metres below ground level (All wells were completed as standpipes with measured stick-down as shown in field notes under **Appendix F**)

mV – millivolts

L - litres (referring to volume of water purged from the well prior to groundwater sample collection)

Redox – Reduction Potential

 μ S/cm – micro Siemens per centimetre (EC units)

Groundwater samples were observed to be oxidising and slightly acidic (pH).

Groundwater wells were not surveyed and only two wells were installed so therefore an accurate groundwater flow direction could not be established. Based on local topography, groundwater at the adjacent service station (Site 2) is anticipated to flow to the north east.

7.3 Laboratory Analytical Results

7.3.1 Soil Analytical Results

Summary of the soil analytical results for this investigation, with number of tested samples, minimum/maximum analyte concentrations for primary samples and samples found to exceed the criteria, is presented in **Table 7-4**. More detailed tabulation of results showing the concentrations for individual samples alongside the adopted soil criteria, in addition to the previous results (EI, 2018) are presented in **Table B-1** (Appendix B).

Table 7-4 Summary of	of Soil Analytical Results
----------------------	----------------------------

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding Criteria
Priority Metals				
6	Arsenic	2.6	22	None
6	Cadmium	<0.4	<0.4	None
6	Chromium (Total)	6.9	35	None
6	Copper	9.3	55	None
6	Lead	15	220	None
6	Mercury	<0.1	<0.1	None
6	Nickel	<5	8.2	None
6	Zinc	14	65	None
PAH				
6	Naphthalene	<0.5	<0.5	None
6	Benzo(a)pyrene	<0.5	<0.5	None
6	Carcinogenic PAH (as B(a)P TEQ)	<0.6	<0.6	None
6	Total PAH	<0.5	1.2	None
BTEX				
6	Benzene	<0.1	<0.1	None
6	Toluene	<0.1	<0.1	None
6	Ethyl benzene	<0.1	<0.1	None
6	Xylenes (Total)	<0.3	<0.3	None
TRH				
6	F1	<20	<20	None
6	F2	<50	58	None
6	F3	<100	190	None
6	F4	<100	<100	None
Pesticides				
4	OCP	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None
4	OPP	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None
РСВ				
4	Total PCB	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None

Number of Analyte Primary Samples		Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding Criteria
Asbestos				
4	Asbestos	Not detected	Not detected	None

PQL: Practical Quantitation Limit

7.3.2 Groundwater Analytical Results

Summary of the groundwater analytical results, with number of tested samples, minimum/maximum analyte concentrations for primary samples and samples found to exceed the GILs, is presented in **Table 7-5**. More detailed tabulation of results showing the concentrations for individual samples alongside the adopted groundwater criteria are presented in **Table B-2** (Appendix B).

Table 7-5	Summary	of	Groundwater	Analytical	Results
-----------	---------	----	-------------	------------	----------------

Number of Primary Samples	Analyte	Minimum Concentration (μg/L)	Maximum Concentration (µg/L)	Sample(s) Exceeding GILs			
Priority Metals							
2	Arsenic	2	2	None			
2	Cadmium	<0.2	<0.2	None			
2	Chromium (Total)	2	2	GB-H203M-1 (2 µg/L) GB-H204M-1 (2 µg/L)			
2	Copper	1	1	None			
2	Lead	1	1	None			
2	Mercury	<0.1	<0.1	None			
2	Nickel	2	2	None			
2	Zinc	36	36	GB-H203M-1 (36 µg/L) GB-H204M-1 (36 µg/L)			
PAH							
2	Naphthalene	<1	<1	None			
2	Benzo(α)pyrene	<1	<1	None			
2	Total PAH	<1	<1	None			
BTEX							
2	Benzene	<1	<1	None			
2	Toluene	<1	<1	None			
2	Ethyl benzene	<1	<1	None			
2	o-xylene	<1	<1	None			
2	m + p-xylene	<2	<2	None			
TRH							
2	F1	<20	<20	None			
2	F2	<50	<50	None			
2	F3	<100	<100	None			
2	F4	<500	<100	None			

Number of Primary Samples	Analyte	Minimum Concentration (µg/L)	Maximum Concentration (µg/L)	Sample(s) Exceeding GILs
VOC				
2	Bromodichloromethane	<1	1	None
2	Chloroform	<5	10	None
2	Other VOCs	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None
Phenols				
2	Total Phenols	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None

PQL: Practical Quantitation Limit

8. SITE CHARACTERISATION

8.1 Subsurface Conditions

Based on the borehole logs, the site lithology was generalised as a layer of gravelly silt / silty clay filling (various depths averaging 0.35 thickness), overlying natural, silty clay and shale bedrock. Subsurface conditions were consistent with the previous investigation however an average of 1.3m of fill was encountered in EI (2018).

8.2 Soil Impacts

All analytical results for the potential contaminants in representative fill and natural soil samples were found to comply with the adopted health based criteria.

The previous investigation identified an isolated exceedance of the health based criteria, lead of 2,800 mg/kg at BH102_0.3-0.4. However, under the proposed development, bulk excavation of site soils would be performed in order to construct the basement which covers location BH102. It was considered the risk to human health and the environment was low.

8.3 Groundwater Impacts

Two monitoring wells were installed at targeted locations at the boundary of the adjacent service station (Site 2). Hydrocarbon odour was noted during drilling in shale bedrock at 10mBGL at BH204M. The odorous shale bedrock was not sampled. However no odour was detected during groundwater sampling and laboratory results for hydrocarbons in groundwater in both wells were below the laboratory limit of reporting. From the GME on 21 June 2021, depth to water readings was at 7.39 mBGL and 8.14 mBGL within the shale bedrock.

For all tested samples, the concentrations of the potential chemicals were below the adopted criteria, except for minor dissolved metals (chromium and zinc). Overall, the metal concentrations were consistent with natural (background) conditions in long standing, urban environments and present a low risk. Site soils were not considered to be the source of metal impacts, given their low concentrations in the tested, representative (fill and natural) samples.

8.4 Review of Conceptual Site Model

On the basis of the ASI findings, the CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential on-site and off-site receptors.

9. CONCLUSION

The property located at 2-6 Pilgrim Avenue & 11-13 Albert Road, Strathfield NSW was the subject of an Additional Site Investigation, which was conducted to assess the nature and degree of on-site contamination associated with current and former uses of the property. The key findings from this ASI were as follows:

- The current site use consists of three residential unit blocks and two individual residential dwellings. There is no evidence of underground storage tanks (USTs) or underground petroleum storage systems (UPSS) on site. A Shells Coles Express service station is operating directly adjacent to the east (Site 2, 9 Albert Street, Strathfield NSW).
- The previous (preliminary) investigation completed by EI (2018) established that:
 - The site has been used for residential purposes from at least 1943.
 - Limited intrusive investigation at five locations reported concentrations below the adopted criteria (NEPC (2013) residential with minimal opportunities for soil access) with the exception of lead in BH102_0.3-0.4 (2,800 mg/kg).
 - Data gaps following the investigation included groundwater assessment and additional soil investigation to cover the minimum guideline density.
- As part of this ASI, intrusive soil investigation was completed at four locations (BH201, BH202, BH203M and BH204M). Groundwater sampling was completed at two monitoring wells (BH203M and BH204M) targeted at the boundary of the service station (Site 2).
- The site lithology was generalised as a layer of gravelly silt / silty clay filling (various depths averaging 0.35m thickness), overlying natural, silty clay and shale bedrock. Subsurface conditions were consistent with the previous investigation however an average of 1.3m of fill was encountered in EI (2018).
- Standing water level was 7.39 mBGL and 8.14m BGL within the shale bedrock. Groundwater flow direction was inferred from local topography to be north-east, towards Parramatta River.
- All analytical results in representative fill and natural soil samples were found to comply with the adopted health based criteria.
- Hydrocarbon odour was noted during drilling in shale bedrock at 10mBGL at BH204M. The
 odorous material was not sampled. However no odour was detected during groundwater
 sampling and laboratory results for hydrocarbons in groundwater in both wells were below
 the laboratory limit of reporting.
- Contaminant concentrations in the representative groundwater samples were below the adopted criteria, with the exception of minor dissolved metals (chromium and zinc). The metal concentrations in groundwater were considered consistent with natural (background) conditions in long standing, urban environments, rather than site specific impacts. Therefore, the detected metal concentrations are not considered to be cause of environmental concern for the site development.

Based on the findings from this ASI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 11**), EI concludes that, based on the proposed development:

- There is localised lead impact (2,800 mg/kg) in fill around location BH102 (to a depth of at least 0.4m BGL). However, under the proposed development, bulk excavation of site soils would be performed in order to construct the basement which covers location BH102. It was considered the risk to human health and the environment was low; and
- The site can be made suitable for the proposed development, provided the recommendations detailed in **Section 10** are implemented.

10. RECOMMENDATIONS

El makes the following recommendations in relation to the proposed development:

- Prior to proposed site demolition, a suitably qualified and experienced consultant should be engaged to perform a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition works. All identified hazardous materials must be appropriately managed to maintain worker health and safety during demolition works and to prevent spreading of hazardous materials to site soils.
- Fill material within the proposed basement footprint, which will include the lead impacted surficial fill, is to be classified and disposed off-site in accordance with EPA (2014) Waste Classification Guidelines as part of bulk excavation works for the construction of the four level basement carpark. All soil to be disposed offsite is to be classified in accordance with EPA (2014) Waste Classification Guidelines, including VENM.
- A construction environmental management plan (CEMP) is prepared by the principal or earthworks contractor. The CEMP should consider the normal environmental issues that may occur during development such as but not limited to dust, noise, odour, vibration, safety and traffic and also include:
 - Waste management of soils (including fill) to ensure that are appropriately classified for disposal in accordance with the NSW EPA Waste Management Guidelines (Part 1 Classifying Waste); and
 - Provide unexpected finds protocols should any unexpected hydrocarbons contamination or hazardous materials are identified during site earthworks.
- Prior to construction, an additional groundwater monitoring event should be conducted to confirm groundwater results. The groundwater monitoring wells are to be surveyed to provide indicative groundwater flow direction.
- Any material being imported to the site (i.e. for landscaping purposes) should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM.
- Preparation of a final site validation report by a suitably qualified environmental consultant, certifying the site suitability of soils and groundwater for future proposed land uses.

11. STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of Convertia Pty Ltd, whom is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report was limited to that agreed with Convertia Pty Ltd.

No other party should rely on this document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events (e.g. groundwater movement and or spillages of contaminating substances). These changes may occur subsequent to El's investigation.

El's assessment is necessarily based upon the results of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the project proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for Convertia Pty Ltd and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018.

Chapman GA and Murphy CL (1989) *Soil Landscapes of the Sydney 1:100 000 Sheet*, Soil Conservation Service of NSW, Sydney, September 1989.

DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, New South Wales Department of Environment and Conservation, DEC 2007/144, June 2007.

DMR (1983) *Sydney 1:100,000 Geological Series Sheet 9130*, Geological Survey of New South Wales, Department of Mineral Resources.

DUAP/EPA (1998) *Managing Land Contamination. Planning Guidelines SEPP 55 - Remediation of Land*, New South Wales Department of Urban Affairs and Planning / Environment Protection Authority, August 1998.

El (2018) Preliminary Site Investigation with Limited Sampling, 2-6 Pilgrim Avenue & 9-13 Albert Road, Strathfield NSW, Ref. E23668.E01_Rev1, dated 7 February 2018.

EnRisk (2016) *Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs,* Environmental Risk Services Pty Ltd, Environment Protection Authority of New South Wales, 25 February 2016.

EPA (1995) *Sampling Design Guidelines*, Contaminated Sites Unit, Environment Protection Authority of New South Wales, EPA 95/59, September 1995.

EPA (2014) *Waste Classification Guidelines – Part 1: Classifying Waste*, Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.

EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW EPA, October 2017.

EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2020P2233, April 2020.

Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) *Guidelines for the Use of Acid Sulfate Soil Risk Maps* (2nd Edition), Department of Land and Water Conservation, Sydney.

NEMP (2020) *PFAS National Environmental Management Plan*, National Chemicals Working Group of the Heads of the EPAs Australia and New Zealand (HEPA), January 2020.

NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environment Protection (Assessment of Site Contamination) Amendment Measure, National Environment Protection Council, April 2013.

NHMRC (2018) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.5, August 2018.

NUDLC (2020) *Minimum Construction Requirements for Water Bores in Australia* (4th Edition). National Uniform Drillers Licensing Committee, 2020.

Standards Australia (2005) Table E1 - Minimum Sampling Points Required for Site Characterisation, in Australian Standard AS4482.1-2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-volatile and Semi-volatile Compounds, Standards Australia 2005.

Strathfield Local Environmental Plan 2012.

USEPA (2000a) *Guidance for the Data Quality Objectives Process - EPA QA/G-4*, United States Environmental Protection Agency, EPA/600/R-96/055, August 2000.

USEPA (2000b) Data Quality Objectives Process for Hazardous Waste Site Investigations - EPA QA/G-4HW, United States Environmental Protection Agency, EPA/600/R-00/007, January 2000.

USEPA (2006) *Data Quality Assessment: A Reviewers Guide - EPA QA/G-9R*, United States Environmental Protection Agency, Office of Environmental Information, EPA/240/B-06/002, February 2006.

Vic EPA (2000) *Groundwater Sampling Guidelines*, Environment Protection Authority for the State Government of Victoria, April 2000.

WADOH (2009) *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia,* Published by the Western Australian Department of Health, May 2009.

ABBREVIATIONS

ACM	Asbestos-Containing Materials
AHD	Australian Height Datum
ASS	Acid Sulfate Soils
AST	Above-ground Storage Tank
Β(α)Ρ	Benzo(α)Pyrene (a PAH compound)
BGL	Below Ground Level
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes
CCO	Chemical Control Order
COC	Chain of Custody
CSM	Conceptual Site Model
cVOC	Chlorinated Volatile Organic Compounds (a sub-set of the VOC suite)
DA	Development Application
DBYD	Dial Before You Dig
DO	Dissolved Oxygen
DP	Deposited Plan
DSI	Detailed Site Investigation
EC	Electrical Conductivity
EPA	Environment Protection Authority (of New South Wales)
F1	C_6 - C_{10} TRH (less the sum of BTEX concentrations)
F2	$>C_{10}-C_{16}$ TRH (less the concentration of naphthalene)
F3	TRH >C16-C34
F4	TRH >C34-C40
FCS	Fibre Cement Sheeting
FFL	Finished Floor Level
GIL	Groundwater Investigation Level
GIPA	Government Information Public Access
GME	Groundwater Monitoring Event
GSW	General Solid Waste
HDPE	High Density Polyethylene
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
L	Litres
LEP	Local Environmental Plan
LGA	Local Government Area
LOR	Limit of Reporting (limit of reporting for respective laboratory method)
m	Metres
µg/L	Micrograms per Litre
mg/L	Milligrams per Litre
mV	Millivolts
N/A	Not Applicable
NATA	National Association of Testing Authorities, Australia
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticides
OPP	Organophosphate Pesticides

РАН	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated Binhenvis
nH	Potential Hydrogen (a measure of the acidity or basicity of an aqueous solution)
POI	Practical Ouantitation Limit (limit of detection for respective laboratory method)
PSH	Phase-Senarated Hydrocarbons
PSI	Preliminary Site Investigation
	Quality Assurance / Quality Control
Redox	Reduction-Oxidation Potential
RI	Relative Level
SAQP	Sampling and Analysis Quality Plan
SIL	Soil Investigation Level
SRA	Sample Receipt Advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TEQ	Toxicity Equivalent Quotient
ТРН	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UCL	Upper Confidence Limit (of the mean)
UPSS	Underground Petroleum Storage System
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VENM	Virgin Excavated Natural Material
VOC	Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A – Figures

LEGEND (Note: All locations are approximate)		Drawn:	T.M.	Convertia Pty Ltd	Figure:
Site boundary Basement boundary UST location	eiaustralia	Approved:	L.X.	2-6 Pilgrim Avenue & 11-13 Albert Road, Strathfield NSW	2
Groundwater monitoring well location Borehole location	Contamination Remediation Geotechnical Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088	Date:	25-06-21	Sampling Location Plan	Project: E23668.E03.Rev0

Appendix B – Tables

Table B.1 Summary of Soil Analy	tical Results																										E23668	- Strathfield
						Heavy	/ Metals					P.	AHs			В	EX			т	RH		т	рн	Pest	ticides	PCBs	Asbestos
Sample ID	Material	Date	As	Cd	Cr	Cu	РЬ	Hg	Ni	Zn	Carcinogenic PAHs (as B(d)P TEQ)	Benzo(ɑ)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	c,c,	C 10 C 30	Total OCPs	Total OPPs	Total	Presence (Yes/No)
EI, 2018																												
BH101_0.3-0.4			13	0.3	18	120	530	0.15	8.1	92	0.3	0.2	1	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH102_0.3-0.4			5	0.6	9.3	140	2,800	0.43	8.9	190	1.0	0.7	7.4	<0.1	<0.1	< 0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH103_0.4-0.5	Fill		9	< 0.3	11	27	72	< 0.05	9.7	46	< 0.3	0.1	<0.8	<0.1	<0.1	< 0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH104_0.3-0.4			8	<0.3	14	67	350	0.08	4.9	83	0.6	0.4	4.4	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH105_0.3-0.4		23/1/2018	6	< 0.3	7.6	6.3	41	< 0.05	1.4	9.1	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH101_1.0-1.1			14	<0.3	22	19	33	< 0.05	<0.5	13	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
BH102_1.0-1.1	Residual Soil		6	<0.3	31	14	110	< 0.05	1.4	22	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
BH103_1.0-1.1			4	<0.3	11	12	36	< 0.05	1	18	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
BH104_1.5-1.6			7	< 0.3	19	17	39	< 0.05	0.8	13	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
EI, 2021			1		1	1		1	1 -	T	1	1	1	1	T	T			r		1	r				1		
BH201-0.3-0.5		17/6/2021	12	< 0.4	35	9.3	63	< 0.1	< 5	22	<0.6	< 0.5	< 0.5	< 0.5	<0.1	<0.1	<0.1	< 0.3	< 20	< 50	< 100	< 100	< 20	88	N.D.	N.D.	N.D.	No
BH202-0.3-0.5	Fill		9.2	< 0.4	28	55	220	< 0.1	6.8	27	<0.6	< 0.5	< 0.5	< 0.5	<0.1	<0.1	<0.1	< 0.3	< 20	< 50	< 100	< 100	< 20	< 50	N.D.	N.D.	N.D.	No
BH203M-0.4-0.5		18/6/2021	9.6	< 0.4	24	39	180	< 0.1	8.2	61	<0.6	< 0.5	1.2	< 0.5	<0.1	<0.1	<0.1	<0.3	< 20	< 50	180	< 100	< 20	211	N.D.	N.D.	N.D.	NO
BH201-3.8-4.0	Matural	17/0/0004	2.6	< 0.4	6.9	31	15	< 0.1	7.6	65	<0.6	< 0.5	< 0.5	< 0.5	<0.1	<0.1	<0.1	<0.3	< 20	58	190	< 100	< 20	288	N.A.	N.A.	N.A.	N.A.
BH204W-0.3-0.5	Naturai	17/6/2021	10	< 0.4	32	15	20	< 0.1	< 5	14	<0.6	< 0.5	< 0.5	< 0.5	<0.1	<0.1	<0.1	<0.3	< 20	< 50	< 100	< 100	< 20	< 50	N.D.	N.D.	N.D.	NO
B11204W+1.0+2.0	ļ		22	~ 0.4	51	20	52	5 0.1	Statio	tical Analysis	×0.0	× 0.5	× 0.5	× 0.5	50.1	50.1	50.1	~0.5	× 20	× 50	< 100	< 100	~ 20	< 50	11.0.	IN.A.	11.75	10.00.
	Maximum Concentration		22	0.6	25	140	2800	0.42	0.7	100	•	0.7	7.4	< 0.5	<0.1	<0.1	<0.1	<0.2	< 20	59	100	< 100	< 20	200	~1	<1.7	~1	No
				0.0	00	140	2000	0.40	0.1	SILs		0.1	1.4	- 0.0	-0.1	-0.1	-0.1	-0.0	- 20	00	100	- 100	. 20	200				140
HIL B -	Residential with Minimal Acc	ess to Soil	500	150	500 Cr (VI)	30,000	1,200	120	1,200	60,000	4		400														1	
							Source de	pths (0 m to	<1 m. BGL					NL	4	NL	NL	NL	310	NL								
	HSL D - Commercial/ Industr	rial					Source de	pths (1 m to	<2 m. BGL					NL	6	NL	NL	NL	480	NL								
s	Soil texture classification - Cla	ay 1					Source de	epths (2m to ·	<4 m. BGL)					NL	9	NL	NL	NL	NL	NL								
							Sou	urce depths (4	1 m+)					NL	20	NL	NL	NL	NL	NL								
Management Limi	its – Residential, parkland an Fine grained soil texture ¹	d public open space																	800	1,000	3,500	10,000						
	Asbestos Contamination																											Detection

Notes:

All results are recorded in mg/kg (unless otherwise stated) Highlighted values indicates concentration exceeds Human Health Based Soil Criteria

NEPC 1999 Amendment 2013 'HL B' - Health based Residential with minimal opportunities for soil access including dwellings with fully and permanently paved yard space such as high-rise buildings and apartments. NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels based on vapour intrusion values applicable for commercial / industrial settings HIL B

Not Analysed' i.e. The sample was not analysed Not Calculated'

HSLD NA NC ND NL NR 1

- Not Classianed[®] Not Detected (ii all concentrations of the compounds within the analyte group were found to be below the laboratory limits of detection Not Limity The sol vapour limit accessed the soil concentration at which the pore water phase cannot dissolve any more individual chemical No current publicated Chemion Fine grainet soil values were applied for clay To obtain F1 subtact Naghtatene from the >C10-C10 fraction To obtain F1 subtact Naghtatene from the >C10-C10 fraction

- F1 F2 F3 F4
- (>C16-C34) (>C34-C40)

Table B.2 - Summary of Groundwater Analytical Results

				Metals								PAHs BTEX						TR	Hs		VOCs					
Sample ID)	Sampling Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(α)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	Bromodichloromethane	Chloroform	Other VOCs	Total Phenols
GB-H203M	-1	04/0/0004	2	< 0.2	2	1	1	< 0.1	2	36	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 2	<20	<50	<100	<100	< 1	< 5	ND	ND
GB-H204M	-1	21/0/2021	2	< 0.2	2	1	1	< 0.1	2	36	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 2	<20	<50	<100	<100	1	10	ND	ND
											Statistical	Analysis														
Maximum	n Concentratio	n	2	< 0.2	2	1	1	< 0.1	2	36	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 2	<20	<50	<100	<100	1	10	ND	ND
											GIL	.s														
	mornial / indu	otrial					2m to •	<4m					NL	30,000	NL	NL	NL	NL	NL	NL						
Soil texture of	classification -	- Clav					4m to •	<8m					NL	30,000	NL	NL	NL	NL	NL	NL						
		. ,					8m-	÷					NL	35,000	NL	NL	NL	NL	NL	NL						
	Fresh	Waters ¹	24 (AsIII) 0.2 1 ³ (Cr VI) 1.4 3.4 0.06 ² 11 8 ³									0.1	16	950	180 ⁴	80 4	350	275 ⁴	50 ⁵	60 ⁵	500 ⁵	500 ⁵		370		320
GILs	Marine	Waters ¹		0.7 2	27 (Cr III) 4.4 (Cr IV)	1.3	4.4	0.1 ²	7	15 ³		0.1	50 ³	500 ³	180 ⁴	5 ⁴	350 ⁴	275 ⁴	50 ⁵	60 ⁵	500 ⁵	500 ⁵		370		400
	Recreatio	onal Water ⁶	100	20		1,000 *	100	10	200	3,000*		0.1		10	25*	3*	20 *	20 *						2,500		

Notes:

Highlighted indicates values exceeded criteria

All values are µg/L unless stated otherwise

HSL D NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels for vapour intrusion applicable for commercial / industrial settings.

NL Not Limiting

F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

F2 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

F3 (>C16-C34)

F4 (>C34-C40)

- 1 NEPM (2013) Groundwater Investigation Levels for fresh and marine water quality, based on ANZECC & ARMCANZ (2000).
- 2 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZG (2018) for further guidance.

3 Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

4 Low reliability toxicity data, refer to ANZECC & ARMCANZ (2000)

5 In lack of a criteria the laboratory PQL has been used (DEC, 2007).

6 Based on NHMRC (2011 - update August 2018 v.3.5) Drinking Water Guidelines. The lowest of the Health Guideline x10 or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by *

Appendix C – Proposed Development Plans

LEGEND

- 1 vehicular access vehicular access to developme via Pilgrim avenue
- pedestrian access pedestrian access to building A
- pedestrian access pedestrian access to building P
- communal open space (L01)
- communal open space (L05)
- I m setback to provide the required setback by DCP R4 zone
- 9 m setback to provide 18 meter building separation between habitable rooms in buildings up to 8 storeys recommended by ADG
- communal open space (L11)

- high point on site (RL 10.480)
- low point on site (RL 9.030)

1361 - DA 07 F F 17/5/21 DA amendmenta

design analysis - O1 - site plan

DA AMENDMENTS - 17.06.21

11-13 Albert Road, STRATHFIELD

kennedy associates architects level 3 / 1 booth street annandals 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect - steve kennedy - registration no. 6828

SITE 1 of 2 under DCP

HEIGHT (STOREYS)

VEHICULAR ACCESS

ACTIVATION

ADG SETBACKS

A P

ORGANISATION

COMMUNAL OPEN SPACE

design analysis - 03 - program

DA AMENDMENTS - 17.06.21

11-13 Albert Road, STRATHFIELD

kennedy associates architects level 3 / 1 booth street annandals 2038 p + 61 2 9557 8486 f + 61 2 9557 8477 nominated architect - steve kennedy - registration no. 5828

1361 - DA 09 F F 17/6/21 DA amendmenta

ernedy associates architecta level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 81 2 9557 6477 nominated architect - steve kennedy - registration no. 5828

1361 - DA12F F 17/6/21 DA amendments

ernedy associates architecta level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 81 2 9557 6477 nominated architect - steve kennedy - registration no. 5828

ernedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6466 f + 81 2 9557 6477 nominated architect - steve kennedy - registration no. 5828

1361 - DA14F F 17/6/21 DAsmendments

ennedy associates architects level 3 / 1 booth street ennend ele 2038 p + 61 2 9557 6466 f + 61 2 9557 6477 nominated architect - eteve kennedy - registration no. 5628

1361 - DA15F F 17/6/21 DA emendmente

PILGRIM AVENUE ELEVATION

RAW SQUARE ELEVATION

streetscape elevations O1

L-1_22n 1:500 g.k2

proposed development

DA AMENDMENTS - 17.06.21

11-13 Albert Road, STRATHFIELD

kennedy associates architects level 3 / 1 booth street annandale 2038 p + 61 2 9557 6486 f + 61 2 9557 8477 nominated architect - steve kennedy - registration no. 5828

1361 – DA 35 F F 17/5/21 DA amendmenta

Appendix D – Site Photographs

Photograph 1: Drilling at BH201 (17/06/2021).

Photograph 2: Drilling at BH204M (17/06/2021).

Appendix E – Borehole Logs

	eia		str	alia	Project Location Position Job No. Client	Addit 11-13 Refe E236 Conv	ional S 3 Alber r to Fig 668.E0 vertia F	Site Ir t Roa jure 2 3 Pty Lt	nvestigation ad + 2-6 Pilgrim Ave, Strathfield, NSW 2 Contractor Geosense d Drill Rig Commachio Ge Inclination -90°	E eo 20	3C	Sheet 1 OF 1 Date Started 17/6/21 Date Completed 17/6/21 Logged TZ Date: Checked Date:
		Dril	ling		Sampling				Field Material Desc	riptic	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0	0 15				-	CONCRETE: 150mm thickness.			CONCRETE
			- - 0.5 —	0.70	BH201_0.3-0.5 PID = 2.3 ppm			-	FILL: CLAY; high plasticity, medium brown, with trace gravels, no odour.	-		FILL .
			- - 1.0 -	0.70	BH201_0.8-1 PID = 1.7 ppm			СН	CLAY: high plasticity, red with yellow mottling, no odour.	м		RESIDUAL SOIL
			 1.5 2.0	1.40	BH201_1.6-2 PID = 0.8 ppm			СН	CLAY: high plasticity, grey with red mottling, with trace weathered shale, no odour.			-
AD/T	-	GWNE		2.40	BH201_2.6-3 PID = 0.3 ppm			CL	CLAY: low plasticity, red to dark grey, with weathered shale, no odour.	M - D	-	-
				3.20	BH201_3.8-4 PID = 1.2 ppm BH201_4.1-4.3 QD1/QT1			CL	CLAY: low plasticity, red to dark grey, with weathered shale, no odour.	D	-	-
			4.5	4.30	PID = 1.2 ppm				Borehole Terminated at 4.30 mBGL; Refusal on shale.			
			5.0		This bore	nole lo	g shou	ıld be	e read in conjunction with El Australia's accompanying star	ndaro	d not	es.

(eia		str	Geotechni	Project Location Position Job No. Client	Addit 11-13 Refer E236 Conv	ional S 3 Alber r to Fig 68.E0 rertia P	Site Ir t Roa jure 2 3 Pty Lt	nvestigation ad + 2-6 Pilgrim Ave, Strathfield, NSW 2 Contractor Geosense d Drill Rig Commachio Ge Inclination -90°	E eo 20	BC	Sheet 1 OF 1 Date Started 17/6/21 Date Completed 17/6/21 Logged TZ Date: Checked Date:	
		Dri	lling		Sampling				Field Material Desc	riptic	on _		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOI	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENC' DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0	0.15			₽ ⊾ 4 ⊿	-	CONCRETE: 150mm thickness.			CONCRETE	Γ
			-	0.50	BH202_0.3-0.5 PID = 1.3 ppm			-	FILL: CLAY; low to medium plasticity, dark grey to black, with foreign material of bricks, no odour.	-			
			-		BH202_0.8-1			CI	odour.				
			1—		. 12 0.0 pp.11								
			-	1.40				CI- CH	CLAY: medium to high plasticity, light brown, to medium grey, with trace weathered shale, no odour.				
			2		BH202_1.8-2 PID = 2.1 ppm								-
AD/T	-	GWNE	-	2.20				CI- CH	CLAY: medium to high plasticity, light brown mottled grey, with trace weathered shale, no odour.	м	-		
Prj: E.M. 1.03 2014-07-05					BH202_2.8-3 PID = 0.8 ppm								.
b: EIA 1.03 2014-07-05			-										
1 Situ Tool - DGD Li			-	3.60	BH202 3.8-4			CL	CLAY: low plasticity, dark grey to black with brown mottling, and weathered shale, no odour.	-			
.000 Datgel Lab and I			4		PID = 3 ppm								-
25/06/2021 11:53 10.0			-	4.70	BH202_4.5-4.7 PID = 0.3 ppm								
PJ < <drawingfile>></drawingfile>			5-						Borehole Terminated at 4.70 mBGL; Refusal on shale.				
E23668.E03 LOGS.C			-										
IS AU BOREHOLE 3			-										
EIA LIB 1.03.GLB Log	<u> </u>		6-	<u> </u>	This bore	hole lo	g shou	ld be	e read in conjunction with EI Australia's accompanying star	ndaro	l d not	es.	

	Corr	eia		str		Project Location Position Job No. Client	Addi 11-1 Refe E236 Conv	tional S 3 Alber er to Fig 568.E0: vertia F	Site Ir t Roa jure 2 3 Pty Lte	vestigation kd + 2-6 Pilgrim Ave, Strathfield, NSW Contractor Geosense d Drill Rig Commachio G Inclination -90°	BC	DR	Sheet 1 OF 1 Date Started 18/6/21 Date Completed 18/6/21 Logged TZ Date: Checked Date:
			Dril	ling		Sampling	_			Field Material Desc	riptio	on Is	
		PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOI	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	ID Static Water Level
	INC			0 2 4	0.50 2.10 4.10	BH203M_0.4-0.5 BH203M_0.9-1 BH203M_1.9-2 BH203M_2.9-3 BH203M_3.9-4			- C	FILL: Gravelly SILT: mottled dark brown to dark grey, fine trace of sand and organics, no odour. Silty CLAY: brown mottledred to grey, with trace sand and trace gravels, no odour. CLAY: grey mottled brown to red, no odour.	M		Grout Bentonite Concrete
wingFile>> 26/06/2021 11:55 10.0.000 Dagget Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05	GEN		 							SPALE. Extremely weathered rock, no oddur.		-	Bentonite Sand uPVC 50 mm Screen
.GLB Log IS AU BOREHOLE 3 E23668.E03 L0GS.GPJ <<0				- - 14 -	13.10	This bora				Borehole Terminated at 13.10 mBGL; Refusal on shale.			
EIA LIB 1.03.GLB Log IS AU BC				-		This bore	hole lo	og shou	ıld be	read in conjunction with EI Australia's accompanying sta	andaro	d note	es.

	Contami	au	Str	Geotechnie	Project Location Position Job No. Client	Addii 11-1 Refe E236 Conv	tional S 3 Alber r to Fig 368.E0 vertia F	Site Ir t Roa jure 2 3 Pty Lt	vestigation ad + 2-6 Pilgrim Ave, Strathfield, NSW ? Contractor Geosense d Drill Rig Commachio G Inclination -90°	BC Geo 20	DR	Sheet 1 OF 1 Date Started 17/6/21 Date Completed 17/6/21 Logged TZ Date: Checked Date:
	_	Dri	lling		Sampling				Field Material Desc	riptio	n	
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOME LER DE TAILS
				0.15 1.40 2.20 4.80 5.50 10.00 13.00	BH204M_0.3-0.5 PID = 4.8 ppm BH204M_0.8-1 PID = 3.6 ppm BH204M_1.8-2 PID = 5.5 ppm BH204M_3.8-4 PID = 0.7 ppm BH204M_5.3-5.5 PID = 1.3 ppm			CL CL	CONCRETE: 150mm thickness. CLAY: low plasticity, red with brown mottling, with weathered shale, no odour. CLAY: low plasticity, light brown, with light grey mottling, with weathered shale, no odour. CLAY: low plasticity, light brown, with light grey mottling, with weathered shale, no odour. CLAY: low plasticity, dark grey, with weathered shale, no odour. SHALE: no odour.	M		uPVC 50 mm Casing Grout Bentonite Concrete
EALID 1.00.0LD LL			1	L	This bore	hole lo	g shou	Id be	read in conjunction with EI Australia's accompanying sta	indaro	d not	es.

Appendix F – Calibration Forms and Field Data Sheets

Water Quality Meter Calibration Log

Instrument: EI WQM 006 (Hanna Multi Parameter 98194 - Serial no. 05410010101)

Room Tempera	ature: 23.69								
Sensor (Unit of measure)	Standard Solutions Used (Item Code / Name)	Solution Batch Number	Temperature Adjusted Calibration	Instrument Reading					
moucaroy			Solution Value	Initial	Post Calibration				
	Ambient Air	N/A	100%	100%.	100%.				
DO Saturation (%)	Sodium motab: sulfart.	2 Cot: BCB75821	2-0%	10.8%	0.0%				
Temperature (°C)	Thermometer	N/A	22.90	22.2	22.80				
Conductivity	A17031	Lot: 3424	1413.us/cu	1950	1950				
(µs/cm)	417030	Lot: 4505	12880 us/c	1384	p 1 3860				
	H17007	Lot: 408	7.01	6.86	\$ 7.0				
рН	17 17 00 P	Lot: 4663	q.01	4.23	4.05				
	617010	Lot-3726	(0.0)	9.92	10.04				
ORP (mV)	H17021	Lot: 43,8.	240 mV	22711	227.9 MJ				
				WN	. v				

Calibrated by:

LW (ES

Calibration Date: 1716 2

Next Calibration Due:

17/7/21

Notes:

- PH probe placed in cleaning so Intion overnight - pH Solution H17007 replaced.
| WATER SAMPLING FIELD SHEET |
|----------------------------|
|----------------------------|

100 A

		WATER	SAMPLI	NG FIELI	D SHEET			eiaustralia
Site Add	ress:		11-13 Albei	rt Rd + 2-6 P	ilgram Ave, S	Strathfield	Job Num	ber: E23668
Client:			Convertia	а			Date:	2/6/2
Field Sta	ff: 🐭	AS.	78			8 (N)	Sampling	Location ID BHZ03W
Well Loc	ation: 7.	6 P.10	Vin A	R,			Round No	D:
MEDIUM	1	1	Groundwa	ater 🗆	Surface W	ater	□Stormw	vater DOther:
SAMPLI	NG POINT	INFO	11.1					
Well Inst	allation Da	te: 17	16/21				Stick up /	down (m): -(1,12 (+ above ground - below ground)
Initial We	ell Depth (r	nBTOC):	13.00	n			Screen In	terval (mBTOC): N. U- 13. J.J
Previous	Sampling	Date: M	ne				Previous	SWL (mBTOC):
PID REA	DINGS	Constanting of the local division of the loc						
PID Head	dspace (pp	m):					PID Back	ground (ppm):
PID Brea	thing Space	e (ppm):						
PRE PUP	RGE							
Total We	ll Depth (n	BTOC):	13,00				Well Hea	d Condition: , 900
SWL (mE	BTOC):	7.	.27	N.			Water Co	lumn (m): \$73
HASE S	EPARATI	DHYDR	OCARBO	NS (PSH)	P			
Depth to	PSH (mB]	OC):		N 107			PSH Visu	ally Confirmed (Bailer):
PSH Thie	kness (mr	n):	d.		1		0	
Field Filt	ered		-22.		last			a second s
res (0.45	ōμm)	ÚX.			1	19.	No	(Request lab 0.45 μm filter the sample)
PURGE	AND SAM	PLE	~/	State -		l:		6 Ct
Sampling	g Method		Bladde	er 🚬 🛛	□Peristalti	c 🗸 🗆	Submersit	ble DOther:
Depth of	Pump Inle	t (mBTOC): 12	5			Fill Timer:	E-S And
Pump Pre	essure Reg	gulator (ps	si):	0			Discharge	e Timer:
Veather	Conditions	:	Raing				Cycle: (CIMI
oump on	time:	:24	V				Pump off	time: 1:48
VATER	QUALITY	PARAME	TERS		4			
robe Ma	ake and Mo	odel: W8	andoe	>			Bump Tes	st Date and Time:
Time	Volume	SWL	Temp	EC	Redox	DO	pH	Comments (colour, turbidity, odour, sheen etc.)
12/	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	appliet til und
KG	0.5	730	18.70	5 117	520	0	7.17	greg, nigh turbidity Abordan Nist
1:28	1.2	150	18:49	080	2310	0	7.70	
:50	1.5	750	1011	6215	43.6	0	6.92	V
111U	613	730	20.35	6315	42.8	10.50	6.10	gregistsom, high, as, no
127	2,5	751	20.41	600	444	0.70	6.01	
100	3.0	731	20178	5988	449	113	6.55	
1:58	3.)	/50	23.49	5111	7:55	0.16	100	
1:40	4.1	750	2015	5711	40.5	0.11	6.46	v V V
					e,			
Stab 3 cons	ilisation ra	nge: adings	±0.2°C	, ±3%	±20mV	±10%	±0.2	
CIL CIL	U-QR	S/OBSEF	len	55 r	enabe	off	low	flow purp
01117		/ 1		. //				

Rev 1 20150604SH Form OP 017

P þr.

.

Z:\11 - Templates\Field Forms_Worksheets\Water Sampling Field Sheet 2015\Water Sampling Field Sheet_Current June 2021

ſ

Par v

ite Address.			6	1		elaustra	alld
10 /1001033.	11-13 Albe	rt Rd + 2-6 Pilgram Ave,	Strathfield	Job Numb	er; E23668		
lient:	Converti	a .		Date: 2	10/4		
ield Staff	1			Sampling	Location ID 13	H204W	
/ell Location: 2	6 Pilcoin Ac	e Cosport		Round No	: 1		
EDIUM	Groundw	ater DSurface V	Vater	□Stormw	ater DOther:		
AMPLING POINT I	NFO					*	
/ell Installation Date	e: 17/6/21			Stick up /	down (m): -0.0	(+ above ground	I - below ground)
iitial Well Depth (ml	BTOC): 3.0 M			Screen In	terval (mBTOC):	1.95-12.95	
revious Sampling D	Date: N/A			Previous	SWL (mBTOC):	dry	
ID READINGS						0	
ID Headspace (ppr	n):		-	PID Back	ground (ppm):		
ID Breathing Space	e (ppm):		A				
RE PURGE		t.				1	
otal Well Depth (mi	BTOC): 12,9	9		Well Head	d Condition:	ł.	
WL (mBTOC):	X. WS		č	Water Co	umn (m): 4.9 u)	
HASE SEPARATE	DHYDROCARBO	NS (PSH)			*		
epth to PSH (mBT0	DC):			PSH Visu	ally Confirmed (Bail	er):	
SH Thickness (mm):						
ield Filtered					4	200	
es (0.45 μm)	Ø			No	□ (Reques	t lab 0.45 µm filter	the sample)
URGE AND SAMP	LE						
ampling Method	Bladd	er DPerista	ltic 🗆	Submersib	le DOther:		
epth of Pump Inlet	(mBTOC): 12:4	5		Fill Timer:	10/25		
ump Pressure Reg	ulator (psi): 25			Discharge	Timer: 5/5	4	
eather Conditions:	Quercest/R	nin		Cycle: 4	M4/2	×	
ump on time: 12:	.28			Pump off	time: 12: 50		
ATER QUALITY P	ARAMETERS						
robe Make and Mo	del: WOM COC	2	8	Bump Tes	t Date and Time:	and 1	
Time Volume	SWL Temp	EC Redox	DO	pН	Commonte (acles	r turbidity odour a	shoop oto)
(L)	(mbtoc) (°C)	(µS/cm) (mV)	(mg/L)	(units)	Comments (colou	, turbiaity, odour, s	sneen etc.)
12281 25	830 19.61	12.27 12013	0	6.92	grey, malt	, high tarbidity	No odiv,
1 V V 2	\$57 14.94	13.14 \$81.8	2134	6.69	1	1	/
2:52 1		W.68 89.0	0.78	6.65			
2:31 1 2:34 1.5	875 19.85	12.0	070	6.61		in the second	1 to 1 + 44
2:32 1 2:34 1.5 2:34 20	875 19.83 3.82 19.79	1065 900	0.18				
2:31 1 234 1.5 2:32 20	875 19.85 3.82 19.79 8.85 19.79	10.66 39.7	0.69	6.60	V	1- 1	
2:31 1 2:34 1.5 2:34 2.0 37:38 2.5	975 14.85 3.82 19.79 8.85 19.79	10.65 900 10.66 89.7	0.69	6.60	V	1- 41	-
2:31 2:34 .5 2:34 ZO	975 iq.85 3.32 iq.71 8.85 iq.74	1065 900	0.64	6.60	4	1	
2:31 2:34 .5 2:34 20 35:38 2.5	975 iq.85 3.32 iq.71 8.86 iq.74	1065 900 10.60 89.7	0.18	6.60	V		
2:31 2:34 .5 2:34 ZO 2:38 Z.5	975 iq.88 3.82 iq.79 8.84 iq.79	1065 900 10.60 89.7	0.64	6.60			
2:31 2:34 .5 2:34 ZO 37:38 2.5	975 iq.85 3.32 iq.79 8.85 iq.79	1065 900 10.60 89.7	0.69	6.60			
2:51 2:34 1.5 2:34 2:32 2:32 2:32 2:5 5:38 2:5	975 <u>iq</u> 38 3.32 <u>iq.71</u> 8.85 (9.79	1065 900 10.60 89.7	0.64	6.60			
2:51 2:34 1.5 2:34 2:32 2:32 2:32 2:5	975 <u>iq</u> .85 3.32 <u>iq</u> .71 8.85 (9.79	1065 900 10.60 89.7	0.64	03.3			
2:51 2:34 1.5 2:34 2:34 2:32 2:32 2:5 57:38 2:5	975 iq.85 3.32 iq.71 8.85 (9.74	1065 900 10.60 89.7	0.18	60.3			
2:51 2:34 1.5 2:34 2:32 2:32 2:32 2:5 	975 iq.85 3.32 iq.71 8.85 (9.74	1065 900 10.60 89.7	0.78				
2:51 2:34 1.5 2:34 2:32 2:32 2:32 2:5 	975 iq.85 3.32 iq.71 8.85 iq.71	1065 900 10.60 89.7	0.78	23.3 2			
2:51 2:34 1.5 2:34 2:32 2:32 2:32 2:5 5 2:38 2:5 	975 iq.85 3.32 iq.79 8.84 iq.79	1065 900 10.60 89.7		60.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
2:51 2:34 .5 2:34 2.0 5:38 2.5 Stabilisation ran	975 <u>iq</u> 98 <u>3.32</u> <u>iq.79</u> 8.32 <u>iq.79</u> 	1065 900 10.60 99.7					
2:31 1 2:34 1.5 2:34 2.0 5:38 2.5 5:38 2.5 Stabilisation ran 3 consecutive rea	975 <u>iq</u> 98 <u>3.32</u> <u>iq.79</u> <u>8.85</u> (1.74 	1065 900 10.60 99.7	±10%	£.60 ±0.2			
2:31 1 2:34 1.5 2:32 2.0 3:38 2.5 Stabilisation ran 3 consecutive real	975 iq.85 3.32 iq.79 8.85 iq.79 	10.65 90.7 10.60 99.7	±10%	£.60 ±0.2			
2:51 2:34 2:34 2:34 2:32 2:32 2:32 2:5 3:32 2:5 5:5 5:5 5:5 5:5 5:5 5:5 5:	975 [985 3.32 [4.79 8.85 (1.79 	<u>1065</u> <u>106</u> <u>1060</u> <u>89-7</u> <u>1060</u> <u>89-7</u> <u>1060</u> <u>1060</u> <u>89-7</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u>1060</u> <u></u>	±10%	±0.2			

Appendix G – Chain of Custody and Sample Receipt Documentation

Choot of			0	A olo						ļ	V						L	
			Odi	inple INI	AUIX				3		Analys	S					_	comments
Site: > / ?./9 who AP	the Avenue	and Project I	No:									(גיו	•			3	ΞŻ	M.A. senic
9-14 Albert R	look Arat.	Hrield E2366	d		(, etc.)	soft Hs	-			uoi	:) :µsude)		•				5 5 5 9	admum nromlum opper
Laboratory: Env 12 A CHA	rirolab Servid Ashley Stree	ces t, ISW 2067			ains , Pain HIRTEX/D	H/BTEX/P	XJT8/H			Quantificat	oxe noiteo)		0100 6				Ξ āsšā π\b∀H	ercury ckel nc M <u>B</u>
P:0	2 9910 6200	2 Semuling	7		9.1) 25 9T\	1/90) 1/1/R	אראן/	. >	sols	sojs	OEC		SAS	5			A G I	senic
Sample Labora	atory Containe	r oanipilig	TEF	٦	Har A N	7 <u>87</u>	₽V	XEX	pea 	pea	571		20	S∀.			<u>а</u> ЧЛ:	hromium
0	Type	Date Tin	WW.	IOS	110	NH DÖ	MH Y	та	2V 8A	sА	Hq	ud	ds	ЪF			TC	ercury
BH200-0T C	D (12/90/81		\times			\times						•				z a	ckel ewatering Suite
		-																1 & EC DS / Turbidity NTU archese
																	÷řž	otal Cyanide etals (Al, As, Cd, Cr,
																		u, Pb, Hg, Ni, Zn) RH (F1, F2, F3, F4) rev
												-	•					AH Stal Phenol
																		ABORATORY URNAROUND
			_								_	-	_					Standard
								A BR	Envirolab S 12 A	shley. St			-					24 Hours
								Chi	Ph: (02) 9	910 6200					6) C			X 48 Hours
							qor		2	20	Z		. 					72 Hours
	r P						Date	Received:	100	36			•					Other
							Tem		ubient ,	pl								
Container Type: J= solvent washed, acid rinsed S= solvent washed, acid rinsed	d,Teflon sealed, ç d glass bottle	jlass jar		Invest	igator: I	attest th vith stan	at these	field sar	ugerolegui inpling pr	collecter ocedure	d in acc	ordanc	0	Report v	vith EI Wa	ste Classifi	ication 7	Table
VC= glass vial, Teflon Septum				Sample	er's Name	; (EI):		n.	eceived b	y (Enviro	lab)		Sa	mpler's (Comment			
ZED - ZIP-LOCK Bag				Print	Ted	N	hoy	A	Print	Sig				(ouge	Send	the	S A	Bay Yolloit
		Suite 6.01, 55 Mille	r Street,	Signa	ture				Signature	X			 	t.o	Joe[ard	7 7	ance chen
		Ph: 9516 072	2	Date	14/0	6/2 1		-	Date 18	orlal	5		_		•			
CONTINUE ACTION OF		lab@eiaustralia.ci coc March 2018 FORM v.4 - SC	om.au s	IMP(Pleas	ÒRTA e e-ma	NT: ¹ I laborat	ory resu	lits to: le	ab@eia	austral	ia.con	ı.au						

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details	
Your reference	E23668, Strathfield
Envirolab Reference	272095
Date Sample Received	18/06/2021
Date Instructions Received	18/06/2021
Date Results Expected to be Reported	22/06/2021

Sample Condition	
Samples received in appropriate condition for analysis	
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	
Cooling Method	
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

The '\sigma' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

 	eet of /			Sample	e Matri	, ,								Analys	s.							Comments
Control Полика Вилика Состояния Вилика и систояния и систояния и систояния и систояния и систо в систо в	- 8 Pilgrim Ave o Ibar Rood Schart	and q-14 Project	ino: D	2								ENM) Suite				(CrS)		vity)			± < 0 0 0 3	M A senic sdmium nromium Spper
Target D Target D	oratory: Envirolab S 12 Ashley S CHATSWO(P: 02 9910 (services Street, OD NSW 2067 6200			d filtered		SHAYXET BY Store	X318/				Vatural Material	Suite	əpixo		Reducible Sulfur	annedaya noiter	ectrical conducti	shloride			iercury∽ iercury∽ ickel nc Mi® fsenic
W-OT1 U. 52/L 2/L/L Non-	Sample Laboratory	Container Sampling Type Date T	20IF	AƏTAW	ləîî my 24.0	отнек		HRT AMH	X3T8	vocs	Rabestos	D solseoso	Dewatering	oneq Hq \ Hq	sPOCAS	Chromium	PFAS	PH / EC (el	D \ standlu 2		B'NH'925	hromium ead 1ercury ickel
Image: Description Image: Descriprescription Image: Description <thi< td=""><td>W-QT (V)</td><td>52VC 21/06/201</td><td></td><td>×</td><td></td><td></td><td></td><td>\times</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ŀ</td><td></td><td></td><td></td><td></td><td></td><td>ewatering Suite</td></thi<>	W-QT (V)	52VC 21/06/201		×				\times								ŀ						ewatering Suite
Image: Second																						1 & EC 05/TDU
Image: Section of the section of t																1	217	irc-nr	ervices		± ₽≥	iraness trai Cyanide etals (Al, As, Cd, Cr,
Image: Section of the sectio															E	SOLAL	Chatsw	SN Poo	W 2067		0 F 6	1, Pb, Hg, Ni, Zn) (H (F1, F2, F3, F4) -ev
Image Regioned Data Regioned 22 QVI Turbuscouron Three Regioned Enclosed															Job	No:		66 (20)	10 6200	525FJ	5	τ.
Image registered Image registered <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Dat</td><td>Recei</td><td>-hai</td><td></td><td></td><td>22 1011</td><td></td><td>ABORATORY</td></th<>							_								Dat	Recei	-hai			22 1011		ABORATORY
Image: Section Sectin Section Section Sectin Section Section Section Section Section Se				÷.											Tim	Rebei	/ed:			UN1	0-	Standard
International and the second secon	5														Tem	o: Copl	Ambien					
Image: Type: Type: Image: Type: Image:					, at i st	1									Sed	ng: lot	teepact	en/Non	0		、 	48 Hours
Inter Type: Inter Type: Anter Type: <td></td> <td>,</td> <td></td> <td>$\frac{1}{1}$</td> <td></td> <td></td> <td></td> <td></td> <td>72 Hours</td>															,		$\frac{1}{1}$					72 Hours
Inter Type: Investigator: 1 attest that these samples were collected in accordance with standard El field Report with El Waste Classification Table Went washed, acid meed, Tathon seeled giase Jar Investigator: 1 attest that these samples were collected in accordance with standard El field Report with El Waste Classification Table Went washed, acid meed, Tathon seeled Sampler's Name (El): Sampler's Name (El): Report with El Waste Classification Table giess via; Tethor Septim Suite 6.01, 55 Miller Street, Sampler's Name (El): Report with El Waste Classification Table giess via; Tethor Septim Suite 6.01, 55 Miller Street, Sampler's Name (El): Report with El Waste Classification Table giess via; Tethor Septim Suite 6.01, 55 Miller Street, Sampler's Name (El): Report with El Waste Classification Table mine Street, Signature Signature Nut UN Nut CAS UN mine Street, Signature Signature UN UN UN mine Street, Signature Signature UN UN UN mine Street, Signature Signature UN UN UN mine Street, Signature Date UN UN UN mine																						Other
American Section and American Section	ainer Type: Nent washed, acid rinsed, Tefton se	aled glass jar	-	-	nvestiga	tor: I att	est that t	hese sar	nples we samplin	ere colle g proced	cted in a fures.	ccordan	ice with	standar	d Ei field	<u> -</u>	-	Report	with El V	Vaste Classifica	tion Tabl	
Suite 6.01, 55 Miller Street, PYRMONT NSW 2009 Ph: 9516 0722 Iab@eiaustralia.com.au Commention I Remeatation 1 Generation Commention I Remeatation 1 Generation Commention I Remeatation I Generation Commention I Remeatation I Generation Commention I Remeatation I Generation Commention I Remeatation Commention I Remeatation Commention I Remeatation Commention Com	orvent washed, acid rinsed glass bot alural HDPE plastic bottle glass vial, Tefton Septum = Zip-Lock Bag	2		Samp	Rer's Nan	e (EI):	ohin	12		Receive	d by (Env	irolab):	THE	VVY		N N	ampler's	Comm	ents:	1		(
	eiaustralia	Suite 6.01, 55 Miller PYRMONT NSW Ph: 9516 072 lab@eiaustralia.c	r Street, 2009 22 om.au	Sign Date IMP Please	ature ature	2/06 NT:	Lac) Lyresults	to: lab	@eiau	Signalt Date Stralia.	re com.a	D D I	No No		Sh	6.			al of	2 Q	Di St	de o
															1		}					
							+															

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Linda Xiao

Sample Login Details	
Your reference	E23668,2-8 Pilgrim Ave& 9-14 Albert Rd,Strathfield
Envirolab Reference	272273
Date Sample Received	22/06/2021
Date Instructions Received	22/06/2021
Date Results Expected to be Reported	23/06/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 water
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	19
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie		Jacin	ta Hurst
Phone: 02 99 ⁻	10 6200	Phone	: 02 9910 6200
Fax: 02 99	10 6201	Fax:	02 9910 6201
Email: ahie@	ງງenvirolab.com.au	Email:	jhurst@envirolab.com.au

Analysis Underway, details on the following page:

The '\sigma' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

	Comments	HM ≜ Arsenic Cadmium	Chromium Copper Lead Mercury	Nickel Zinc	HM B Arsenic Cadmium	Chromium Lead	Mercury Nickel	Dewatering Suite pH & EC TDS / TDU	Hardness Total Cyanide	Wetals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)	BTEX PAH	LABORATORY		Standard	24 Hours	48 Hours	Other		Table		101	2		
				НАЧ	VA MH	I dho	т												lication	+	F	2	-	20,20
					17	OL	/	\times	×	\times		\times				×	X	×	Classif		H	>		8030
					SƏ	pholr	ci											-	Waste		0	bue	F	#
					səj	eydin	s												with EI	ments	fer	Zhu	A	4 >
ľ						SAF	ł												Seport v	's Con	Ľ	10	A A	600
					S∀	3POC	3													ampler)UCa.	r	R	X
				əţin	2 gninet	вw9С						•						+	_	Ű		+	i.t	
alveic		ity)	l couquetiv	strical	oele) DE] / Hq										1			1ce wit				3:00	
Ans			ехсралде	noite	cec (cs) / Hq													ccordar					ĩ
		_	ication	lijner	uD sots	ədəA													res.	.: 0	Ŧ		0 61 2	Som.a
					sotse	∋d≳A													rocedu	i by (S	20	a la	181	alia.o
					s												1	Mere	pling pi	eceived	Print	Signatur	Date	iaustı
	L				X	978												amples	ld sam	CC.				lb@e
	-		×:	378/	нят\ ^	ΜΗ						>	<					hese s	d El fie	ES-	50	A		s to: <mark> a</mark>
			sHA9\X	H/BTE	чят∖ ≜	MH				2	\times							st that t	tandar	121	di m	13	7	y result
		_	sHA9\X3	A/87	-ият\ ^А 19/90/9	ос ни	\times							12	\times			: I atte		(EI):	Ma	Nau.	¢ II	borator
Matrix					НЕВ	10												stigator		's Name	Live		RTAI	mail la
mple					ור	os	<		-		-		-		-		P	Inve	Ī	Print	Cl	orgnatu Date	NPO	ease e
Sa				-2	ЯЭТА	///												T	10		T		1	ā
	ect No:	Reg		Ś		Time	What	-	+	-	-					-	?	1				Street,	m.au	SGS
	Proje	L C		23	ampling	-	2			+	-	-	-	+	-	-						Willer VSW 2	s 0722 Nia.co	DRM v.4 - S
				2,5	00 . 1	Date	1901	T	T								A					11, 55 IONT I	i: 951) austra	rch 2018 Fi
	VE.	~		000	5		-			-		-	-			-						PYRM PYRM	b@ei	COC Ma
4	T	Sh	N		Contain	110	177							218			1	lass jar				<i></i> ろ	<u>n</u>	
	6	2	101		, Vic		2	+	-		3			B	-		>	ealed g	otile					
T	101.11	12/4	R.	2	Laborato													ed, Tefton s	sed glass bc 'le	ш				
Site: 2 /	9-7	Strathf.	Laboratory:		Sample	BHYN ALOC	Chroneller	07-2-1-10THA	0582-105HQ	04-28-40	[3ri2ol-4,1-43	BH200-QD	Bitro &T	3H2020305	0-1-32 Cache	0.2-3-1-20xHE	059.5-TOTHE	ntainer Type: solvent washed, acid rins	natural HDPE plastic bott	─ glass vial, 1 efton Septu		Y	Contamination Remediation	

e	Comments HM ^A Arsenic Cadmium Chronnium	Copper Copper Lead Nickel Zinc		TCI Lead Mercury Nickel	Dewatering Suite	Hardness	Total Cyanide Metals (AI, As, Cd, Cr, Cu. Ph He Ni 2n)	TRH (F1, F2, F3, F4) BTEX	PAH	TURNAROUND	Standard	24 Hours	A8 Hours	72 Hours	Other		lassification Table]			03980	
			orides Phates SA:	יועס וויקס ששש		~						~					Report with El Waste C	r's Comments:			ePort N# 84	
ysis	(vity)	ctrical conducti Suite	H / EC (ele	-Iq De									-				ce with	Sample			R mggo	
Analy	(ດວ່າອີດການເຊື່ອດີດ	H \ CEC (c spestos (c spestos (c	V A A Iq													were contected in accordance	sceived by (Sess):	rint M·H	lignature	ate 18,06,21 31	australia com au
		H/BTEX/PAHs CB/Asbestos H/BTEX/PAHs F/PAHs F/PAHs	чм [^] /тR ОСР/ОР/Р ИМ [^] /ТR ИЛ [^] /ТR 	B 		×	<	~	<			>	<	< >	<	: I attest that these samples	standard El field samp	a (EI): 72/- C//7 R	madigan F	Contrat and	-6-21 E	NT: boratory results to: ab@e
sample Matrix			SOIL SOIL) ; ×-							>		X	< >	<	Investigator	2	Sampler's Name	Print ClG/VP	Signature	Date 18	IMPORTA Please e-mail la
	Project No:	SNIJ	Type Date Time	MAYA (c/99/21 872								VC V V X	2 11 0	merand	30		101 SC			Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	Ph: 9516 0722	lab@eiaustralia.com.au coc March 2018 FORM v.4 - SGS
/	E Pog	EULO	Laboratory C. ID	5	C H	5	0	a	0	A	5	52	/ V	COD		rinsed. Tefton sealed of	rinsed glass bottle	⊳ptum			כומי	stion Gootechnical
Cito.	AS (ast	Laboratory:	Sample ID	BH202.3.8-4:0	H-S:+-coc/161	BH24M-03-0	13H204 20-8-4	1-3-1-MACHEI	BH20M-2-8-3	BHUOM-3.5-4	Byrdm - 53-5	BH200 RS	TB	5		ontainer Type: = solvent washed, acid /	= solvent washed, acid = natural HDPE plactic ;	C = glass vial, Tefton Se	.B = Zip-Lock Bag	Z		Contamination Remodia

	Comments	HM A Arsenic Cadmium Chromium Copper Lead Lead Mercury	Pewatening Suite sPOCAS Suiphates Suiphates Chlondes FAS Freed Mercing Mercin	Pewatering Suite pewatering Suite pewatering Suite pewatering Suite Tos/TDU Hardness Total Cyanide Metals (A), As, Cd, Cr,	X Cu, Pb, He, Ni, Zh) TRH (F1, F2, F3, F4) BTEX PAH LABORATORY	Standard 24 Hours	Report with El Waste Classification Table Sampler's Comments:	D= Samples do not have 2LB.
	Inalysis	(courductivity)	phyteres of the phyteres				ance with	03980 53980
	A	ication exchance)	Asbestos Quantifi				in accords	21 S
	-		SotsedaA				collected by (See	M.11
			VOCs				ss were c pling pr Print	Signatur Date
		X	HM ^ /TRH/BTE				e sample	
		sHA9\X3	ата\нят\ ^A МН				hat these	dida.
		shAq\X∃ sotseds					l attest t star (EI): 7.	$\frac{1}{11}$
Matrix			ОТНЕВ				stigator:	101 C
Sample					>		Inve Sampler Print	Signatu Date
	Project No:	EING E-3166	Type Sampling Intainer Sampling Intainer Sampling Intainer Sampling Intainer (8/06/5/ Ant/9/11)		>		sjar	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009 Ph: 9516 0722 lab@eiaustralia.com.au
eet 🕹 of 3		to ast for	Sample Laboratory Con ID ID ID T	14-20-20-20-20-20-20-20-20-20-20-20-20-20-	N A Incerts		rr Type: nt washed, acid rinsed, Tefton sealed glass ant washed, acid rinsed glass bottle at HDPE plastic bottle ss vial, Tefton Septum	

 Melbourne
 Optimized

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

Australia

Melbourne

NATA # 1261

Site # 1254 & 14271

Environment Testing

Brisbane

NATA # 1261 Site # 20794

 I/2 I Smallwood Place

 Nuraris Road
 Murarie QLD 4172

 Lane Cove West NSW 2060
 Phone :+617 3902 4600

 Phone :+612 9900 8400
 NATA # 1261 Site # 2027

ABN: 50 005 085 521

46-48 Banksia Road

Welshpool WA 6106

NATA # 1261

Site # 23736

Phone : +61 8 9251 9600

Perth

www.eurofins.com.au

Newcastle

EnviroSales@eurofins.com

New Zealand

Auckland 35 O'Rorke Road 4/52 Industrial Drive Penrose, Auckland 1061 Phone : +64 9 526 45 51 Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 IANZ # 1327 NATA # 1261 Site # 25079

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Sydney Unit F3, Building F

Company name:	El Australia
Contact name:	Clare Madigan
Project name:	2-6 PILGRIM AVE - STRATHFIELD NSW
Project ID:	E23668
Turnaround time:	2 Day
Date/Time received	Jun 18, 2021 3:05 PM
Eurofins reference	803985

Sample Information

- 1 A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab. X
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Sample BH202-2.6-3.0 received as BH202-2.8-3.0, logged as per COC.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Elvis Dsouza on phone : or by email: ElvisDsouza@eurofins.com

Results will be delivered electronically via email to Clare Madigan - clare.madigan@eiaustralia.com.au.

Global Leader - Results you can trust

	00		Australia								New Zealand	
	En	ironment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261	Sydney Unit F3, 16 Mars Lane Co Phone :	Building Road ve West +61 2 99	F NSW 206 00 8400	Brisbar 1/21 Sm Murarrié 6 Phone : NATA #	ne nallwood Place ∋ QLD 4172 +617 3902 4600 ∺1261 Site # 20794	Perth 46-48 Banksia Road Weishpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	
ep:	www.eurofins.com.¿	au email: EnviroSales@eurofins.com	Site # 1254 & 14271	NATA #	1261 Site	e # 18217			Site # 23736	NATA # 1261 Site # 25079		
	El Australia Suite 6.01, Pyrmont NSW 2009	55 Miller Street			rder N eport hone: ax:		8039 02 95	85 316 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 F Jun 22, 2021 2 Day Clare Madigan	M
	2-6 PILGRI E23668	M AVE - STRATHFIELD NS'	~							Eurofins Analytical S	tervices Manager : El	<u><is< u=""></is<></u>
	ø	ample Detail	HOLD	BTEX	Moisture Set	Eurofins Suite B7	BTEX Eurofins Suite B6	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals				
atc	ory - NATA Site	e # 1254 & 14271					-					
N	- NATA Site #	18217	×	X	Х	×	X X	×				
to r	y - NATA Site	# 20794										
-	VATA Site # 23	1736										
Lo Lo	/ - NATA Site #	ŧ 25079										
S.												
	Sample Date	Sampling Matrix Time	LAB ID									
.5	Jun 17, 2021	Soil	S21-Jn36775		×			×				
.5	Jun 17, 2021	Soil	S21-Jn36776		×			×				
	Jun 17, 2021	Soil	S21-Jn36777		×			×				
5.	Jun 17, 2021	Soil	S21-Jn36778		×			×				
0	Jun 17, 2021	Soil	S21-Jn36779		×	×						
Ι.	Jun 17, 2021	Soil	S21-Jn36780		×	×						
	Jun 17, 2021	Soil	S21-Jn36781		×		×					
	Jun 17, 2021	Water	S21-Jn36782				×					

Por lo Por	24		Australia									New Zealand	
	Environn	nent Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000	Sydne Unit F; 16 Mai Lane C	y 3, Buildir s Road ove Wee	g F st NSW	2066 Pt ⇒ B	risbane 21 Small urarrie Q	wood Place LD 4172 1 7 3902 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
ABN: 50 005 085 521 web	: www.eurofins.com.au email: E	ΞnviroSales@eurofins.com	NATA # 1261 Site # 1254 & 14271	Phone NATA	: +61 2 # 1261 5	9900 841 ite # 18:	00 N 217	ATA # 12	261 Site # 20794	NATA # 1261 Site # 23736	Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290
Company Name: Address:	El Australia Suite 6.01, 55 Mille Pyrmont NSW 2009	sr Street			Order Repor Phon∉ Fax:	t #:::	ωC	303985 12 9516	\$ 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 F Jun 22, 2021 2 Day Clare Madigan	M
Project Name: Project ID:	2-6 PILGRIM AVE - E23668	- STRATHFIELD NS	~								Eurofins Analytical S	ervices Manager : El	vis Dsouza
	Sample [Detail		RIFX	Moisture Set	Eurofins Suite B7	Eurofins Suite B6	втех	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals				
Melbourne Laborat	orv - NATA Site # 1254	4 & 14271		+									
Sydney Laboratory	- NATA Site # 18217		~	×	×	×	×	×	×				
Brisbane Laborato	ry - NATA Site # 20794			$\left \right $									
Perth Laboratory -	NATA Site # 23736												
Mayfield Laborator	y - NATA Site # 25079												
External Laborator	٨												
9 TRIP SPIKE	Jun 17, 2021	Soil	S21-Jn36783					×					
10 TRIP SPIKE LAB	Jun 17, 2021	Soil	S21-Jn36784					×					
11 TRIP BLANK	Jun 17, 2021	Soil	S21-Jn36785	×									
12 BH202-1.8-2.0	Jun 17, 2021	Soil	S21-Jn36786 >	×									
13 BH201-1.8-2.0	Jun 17, 2021	Soil	S21-Jn36787 >	×									
14 BH201-2.8-3.0	Jun 17, 2021	Soil	S21-Jn36788 >	×									
15 BH201-4.1-4.3	Jun 17, 2021	Soil	S21-Jn36789 >	×									
16 BH202-0.8-1.0	Jun 17, 2021	Soil	S21-Jn36790	×									
17 BH204M-0.8- 1.0	Jun 17, 2021	Soil	S21-Jn36791	×									

Environment Testing Welbourne Bontervisy bandenergy Surved brone: -tei 3 8564 5000 NATA # 1261 Welbourne bune Sydney brone: -tei 2 800 8d7 hone: -tei 2 9900 8d7 hone: -tei 2 900 8d7 hone: -tei 2 9900 8d7 hone: -tei 2 9900 8d7 hone: -tei 2 900 8d7 hone: -tei 2 900 8d7 hone: -tei 2 900 8d7 hone: -tei 2 9900 8d	Brisbane 1/21 Smanood Place Murarie QLD 4172 W 2066 Phone : +61 7 3902 4600 8400 NATA # 1261 Site # 20794 18217 803985 : 803985	Perth Ac-48 Banksia Road Welshpool WA 6106 Norta # 1261 NATA # 1261 Site # 23736	Newcastle Newcastle Mayfield East NSW 2304 Mayfield East NSW 2304 PO Box 60 Wickham 2293 Pinone : +61 2 4968 8448 NATA # 1261 Site # 25079 Received:	Auck 35 O'I Penro Phone IANZ
Inscrimtal and EnviroSales@eurofins.com Site # 1254 & 14271 NATA # 1261 Site # 185 Istralia Stratia 6 6.01, 55 Miller Street Phone: Fax: 7 2009 7 2009 7 2009 8 Erroult #: Phone: Fax: Phone: Fax: 8 Environ Site # 125 8 Pick Report #: Phone: Fax: 8 Environ Site # 125 8 Pick Report #: 9	18217 803985	Site # 23736	NATA # 1261 Site # 25079 Received:	
Eurofins Suite B7 Noisture Set BTEX HOLD HOLD BTEX HOLD BTEX HOLD	803985		Received:	
Eurofins Suite B7 Moisture Set BTEX HOLD	02 9516 0722		Due: Priority: Contact Name:	Jun 18 Jun 22 2 Day Clare N
Eurofins Suite B7 Moisture Set BTEX HOLD			Eurofins Analytical \$	Services N
	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals BTEX Eurofins Suite B6 Eurofins Suite B7			
.TA Site # 1254 & 14271				
Site # 18217 X X X X X	X X X X			
A Site # 20794				
ite # 23736				
A Site # 25079				
7, 2021 Soil S21-Jn36792 X				
7, 2021 Soil S21-Jn36793 X				
7, 2021 Soil S21-Jn36794 X				
7, 2021 Soil S21-Jn36795 X				
7, 2021 Soil S21-Jn36796 X				
, 2021 Soil S21-Jn36797 X				
, 2021 Soil S21-Jn36798 X				
; 2021 Soil S21-Jn36799 X				
; 2021 Soil S21-Jn36800 X				

enrofi)	Su Su		Australia									New Zealand	
ABN: 50 005 085 521 web: w	Environmen www.eurofins.com.au email: EnviroS	tt Testing	Melbourne Melbourney Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydne Unit F3 16 Mar Lane C Phone NATA #	/ Building s Road ove Wes : +61 2 9 ≠ 1261 S	g F tt NSW 2 900 8400 ite # 182	0066 Pho 17 17 NA	sbane I Smallwoo arrie QLD ine : +61 7 rA # 1261	od Place 4172 3902 4600 Site # 20794	Perth 46-48 Banksia Road Wetshpool WA 6106 Phone: +161 8 9251 9600 NATA # 1261 Site # 23736	Newcastle Mayfield East NSW 2304 Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland Sc Prorke Road Penrose, Auckland 1061 Phone: +64.9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290
Company Name: Address:	El Australia Suite 6.01, 55 Miller Stre Pyrmont NSW 2009	aet			Order Report Phone Fax:	 9.#	80	13985 9516 0	722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 F Jun 22, 2021 2 Day Clare Madigan	W
Project Name: Project ID:	2-6 PILGRIM AVE - STF E23668	RATHFIELD NSV	>								Eurofins Analytical S	ervices Manager : El	vis Dsouza
	Sample Detai	_		BTEX	Moisture Set	Eurofins Suite B7	Eurofins Suite B6	Class:TRH/BTEXN/PAH/OCP/OPP/Metals BTEX	El Australia Waste				
Melbourne Laborato	ory - NATA Site # 1254 & 1	4271							1				
Sydney Laboratory -	- NATA Site # 18217		~	×	×	×	×	××					
Brisbane Laboratory	y - NATA Site # 20794												
Perth Laboratory - N	VATA Site # 23736												
Mayfield Laboratory	/ - NATA Site # 25079												
External Laboratory													
27 BH203-3.9-4.0	Jun 17, 2021	Soil	S21-Jn36801	×									
28 BH201-0.8-1.0	Jun 17, 2021	Soil	S21-Jn36869	×									
Test Counts			-	7 1	7	2	2	2 4					

Comments	HM A Arsenic Cadmium Copper Copper	Mercury Nickel Zinc HM ¹ Arsenic Cadmin	Chromium Lead	Mercury Nickel	Dewatering Suite	pH & EC TDS/TDU	Hardness Total Cyanide Metals (Al, As. Cd. Cr.	Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)	PAH	LABORATORY		24 Hours	48 Hours	72 Hours	Other	Table .) of autrulis	CUM. CI W		304362	
		НАЧ	e WH	TCLP												fication	+	NPV G			3#0	
	-	5)	040	yd	×	×												vel hein			yort n	
	(1)	;hioride	ate / C	englus					-				_			t with E	nents:	2	-		Re	
	(viv)	ectrical conductiv	C (el	a / Hg												Repor	s Comn) d	2		0	
		energy adites	, DEC	CA14								-				-	mpler's	Dlou	hand		616	1
	(cup)	Reducible Sulfur	unju	Chron	•						•						Sa					
			SA	sPOC											-	El field				W		
Jalysis		əpixo	n per	lq / Hq												andard			1	4 9		
A		etiu2	ຣິດເກອງ	ewad		~										with sta		0	1 m	2:5		
	etius (MNB)) leheteM letuteV	1 bete	Excav												Indance	:()	ac	1	21		
		notteothineut	D sola	səqs¥												in acco	(Eurofins	Lou	de	106	m.au	
			sots	sədsA						-						ollected	sived by	H	nature	00	lia.col	
			1	VOCS	X	×									-	were co	Rece	Prir	Sig	Dat	austra	
	-	Vala		NUL		-				×	X			_		amples					o@eia	
				A MH	V		×	×	×	-				-	-	these si					s to: lat	
		sotsedaA\80	d/d0	OCP/	^	^										st that		おいた	1	1	y results	
		PHAG/XETR/	RR R	AMH AMH										-		or: I atte	:(EI);	24	1	1612	NT: aborator	
mple Matrix		d filtered	ləit m	ri 64.0					1							estigato	's Name	1- Pool	Ine	21	B-mail la	
ample			ы	TAW	×	\times	×	×	×	×	×	-				- <u>s</u>	Samplei	Print	Signat	Date	IMPC Please	
ŝ				SOIL								4							ät,		-	
Sample Matr	t No:			Time	D.r.	-					1	X							er Stree	22	com.a	
	Project	/ Ltd	ampling		7											-			55 Mille	516 07	stralia.	
100		ting Pty	Sa	Date	2/9/2	-			_		>								6.01,	Ph: 9	Deiaus c June 2021	
	hield	nment Tes I 2066	ntainer	Type	VC 2	VC	PVC	31'0	p, vc	14	5					lass jar			Suite	2	lab(
	57 hours	When the first of the second s			S	SP	5	1s	S	-	>					sealed g	aino				m ا	
	AVE,	Eurofins 6 / 16 Mar Lane Cow P: 02 9900	1 aborator	Q	u	1	н,									insed, Tefton	pottle	ptum		-		
Sheet of	Site: 2-6 Plyrin	Laboratory:	Sample	Q	GW-KH2U3M-1	Gew Bitzatin-1	100mg	GW-QR1	GW-QKB1	GW-781	INW-782					Container Type: J = solvent washed, acid r	P = natural HDPE plastic t	VC = glass vial, Tefton Se ZLB = Zip-Lock Bag			elaust Contemposition - Remote	

 Melbourne
 Optimized

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

Australia

Melbourne

NATA # 1261

Site # 1254 & 14271

Environment Testing

Brisbane

NATA # 1261 Site # 20794

 I/2 I Smallwood Place

 Nuraris Road
 Murarie QLD 4172

 Lane Cove West NSW 2060
 Phone :+617 3902 4600

 Phone :+612 9900 8400
 NATA # 1261 Site # 2027

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

46-48 Banksia Road

Welshpool WA 6106

NATA # 1261

Site # 23736

Phone: +61 8 9251 9600

Perth

Newcastle

Auckland 4/52 Industrial Drive 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 IANZ # 1327 NATA # 1261 Site # 25079

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Sydney Unit F3, Building F

Contact name: Ted Zhang	
Project name: 2-6 PILGRIM AVE - STRATHFIE	LD NSW
Project ID: E23668	
Turnaround time: 1 Day	
Date/Time received Jun 21, 2021 2:54 PM	
Eurofins reference 804362	

Sample Information

 \checkmark A detailed list of analytes logged into our LIMS, is included in the attached summary table.

- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab. X
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Elvis Dsouza on phone : or by email: ElvisDsouza@eurofins.com

Results will be delivered electronically via email to Ted Zhang - ted.zhang@eiaustralia.com.au.

Global Leader - Results you can trust

Por Port	20		4	vustralia								New Zealand	
	Env	ironment	Testing	lelbourne Monterey Road andenong South VIC 3175 hone : +61 3 8564 5000 ATA # 1261	Sydne Unit F3 16 Mar Lane C Phone	/ Buildin, s Road ove Wes +61 2 9	g F t NSW 2 900 840	a > ∑ Z Z 990 0	risbane 21 Smallwood Place urarrie QLD 4172 none : +61 7 3902 4600 ATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 JANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 JANZ # 1290
ABN: 50 005 085 521 wet	: www.eurofins.com.a.	ı email: EnviroSale	s@eurofins.com S	ite # 1254 & 14271	NATA	¢ 1261 S	te # 182	17		Site # 23736	NATA # 1261 Site # 25079		
Company Name: Address:	EI Australia Suite 6.01, { Pyrmont NSW 2009	55 Miller Stree	÷			Order Report Phone Fax:			804362 02 9516 0722		Received: Due: Priority: Contact Name:	Jun 21, 2021 2:54 F Jun 22, 2021 1 Day Ted Zhang	We
Project Name: Project ID:	2-6 PILGRII E23668	AVE - STRA	THFIELD NSW								Eurofins Analytical S	ervices Manager : El	vis Dsouza
	ö	mple Detail		Metals M8	BTEX	Volatile Organics	Eurofins Suite B1	Eurofins Suite B4A	BTEX				
Melbourne Laborat	orv - NATA Site	# 1254 & 142	271										
Sydney Laboratory	- NATA Site #	8217		^	×	×	×	×	×				
Brisbane Laborato	ry - NATA Site #	: 20794											
Perth Laboratory -	NATA Site # 23	736											
Mayfield Laborato	'y - NATA Site #	25079											
External Laborator	Ā												
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1 GB-H203M-1	Jun 21, 2021		Water	S21-Jn39997		×		×					
2 GB-H204M-1	Jun 21, 2021		Water	S21-Jn39998		×		×					
3 GW-QD1	Jun 21, 2021		Water	S21-Jn39999 >			×						
4 GW-QR1	Jun 21, 2021		Water	S21-Jn40000			×						
5 GW-QRB1	Jun 21, 2021		Water	S21-Jn40001			×						
6 GW-TB1	Jun 21, 2021		Water	S21-Jn40002	×								

S21-Jn40003

Water

Jun 21, 2021

7 GW-TS1 Test Counts

Grace Tuckwell

From: Sent: To: Cc: Subject: Attachments:	Linda Xiao - ElAustralia <linda.xiao@eiaustralia.com.au> Thursday, 24 June 2021 6:04 PM #AU04_Enviro_Sample_NSW Clare Madigan - ElAustralia; Joel Heininger - ElAustralia E23668 Strathfield 804362-W_report.pdf; 804362_2-6 PILGRIM AVE - STRATHFIELD NSW.CSV; 804362 _COC.PDF</linda.xiao@eiaustralia.com.au>
Follow Up Flag:	Follow up
Flag Status:	Flagged

EXTERNAL EMAIL*

Hi team,

Metal results for GB-H203M-1 and GB-H204M-1 seem to be missing even though it was requested on the COC?

Could you please advise ASAP tomorrow morning?

Kind regards,

Linda Xiao BE (Civil (Environmental)) Environmental / Civil Engineer - Project Coordinator

T 02 9516 0722 M 0433 355 487 E linda.xiao@eiaustralia.com.au

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

Environmental | Geotechnical | Structural | Civil | Hazardous Materials

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

Please consider the environment before printing this email.

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Australia

Melbourne

NATA # 1261

Site # 1254

Environment Testing

Brisbane

NATA # 1261 Site # 20794

ABN: 50 005 085 521

46-48 Banksia Road

Welshpool WA 6106

NATA # 1261

Site # 23736

Phone : +61 8 9251 9600

Perth

www.eurofins.com.au

Newcastle

4/52 Industrial Drive

Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448

NATA # 1261 Site # 25079

EnviroSales@eurofins.com

Penrose, Auckland 1061 Phone : +64 9 526 45 51

New Zealand Auckland 35 O'Rorke Road

IANZ # 1327

Christchurch 43 Detroit Drive

Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

I/2 I Smallwood Place Nuraris Road Murarie QLD 4172 Lane Cove West NSW 2060 Phone :+617 3902 4600 Phone :+612 9900 8400 NATA # 1261 Site # 2027

 Melbourne
 Optimized

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

Sample Receipt Advice

Sydney Unit F3, Building F

Company name:	El Australia
Contact name:	Ted Zhang
Project name:	2-6 PILGRIM AVE - STRATHFIELD NSW
Project ID:	E23668
Turnaround time:	Overnight
Date/Time received	Jun 24, 2021 6:04 PM
Eurofins reference	805633

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab. X
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Elvis Dsouza on phone : or by email: ElvisDsouza@eurofins.com

Results will be delivered electronically via email to Ted Zhang - ted.zhang@eiaustralia.com.au.

Global Leader - Results you can trust

Part of the			A	vustralia						New Zealand	
ABN: 50 005 085 521 web:	Envi www.eurofins.com.au	ironment Te email: EnviroSales@e	eurofins.com	lelbourne Monterey Road anderaong South VIC 3175 ATA # 1261 ATA # 1261 ite # 1254	Sydney Unit F3, Bui 16 Mars Roi Lane Cove \ Phone : +61 NATA # 126	lding F ad Nest NSW 2066 2 9900 8400 61 Site # 18217	Brisbane 1/21 Smallwood Place Murantie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Weishpool WA 6106 Phone : +61 8 2251 9600 NATA # 2561 Site # 23736	Newcastle 4/52 Industrial Drive Mayrield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +44 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Rohone : 0800 856 450 IANZ # 1290
Company Name: Address:	EI Australia Suite 6.01, 5: Pyrmont NSW 2009	5 Miller Street			Ord Rep Pho Fax	er No.: ort #: ne:	805633 02 9516 0722		Received: Due: Priority: Contact Name:	Jun 24, 2021 6:04 F Jun 25, 2021 Overnight Ted Zhang	W
Project Name: Project ID:	2-6 PILGRIM E23668	1 AVE - STRATH	IFIELD NSW						Eurofins Analytical So	ervices Manager : El	vis Dsouza
	Sa	mple Detail		Metals M8	Metals M8 filtered						
Melbourne Laborat	ory - NATA Site	# 1254									
Sydney Laboratory	- NATA Site # 1	8217		×	×						
Brisbane Laborato	ry - NATA Site #	20794									
Perth Laboratory -	NATA Site # 237	36									
Mayfield Laborator	y - NATA Site # 2	25079									
External Laborator	×										
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							

 \times \times

 \times

S21-Jn49705 S21-Jn49706 S21-Jn49766

Water Water Water

 1
 GB-H203M-1
 Jun 21, 2021

 2
 GB-H204M-1
 Jun 21, 2021

 3
 GW-QD1
 Jun 21, 2021

 Test Counts

× m

-

Appendix H – Laboratory Analytical Reports

CERTIFICATE OF ANALYSIS 272095

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23668, Strathfield
Number of Samples	1 Soil
Date samples received	18/06/2021
Date completed instructions received	18/06/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	22/06/2021	
Date of Issue	22/06/2021	
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.	
Accredited for compliance with ISC	D/IEC 17025 - Testing, Tests not covered by NATA are denoted with *	

Results Approved By Giovanni Agosti, Group Technical Manager Steven Luong, Organics Supervisor Thomas Beenie, Lab Technician Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 272095 Revision No: R00

Page | 1 of 11

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		272095-1
Your Reference	UNITS	BH200-QT
Date Sampled		18/06/2021
Type of sample		Soil
Date extracted	-	21/06/2021
Date analysed	-	22/06/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	74

svTRH (C10-C40) in Soil		
Our Reference		272095-1
Your Reference	UNITS	BH200-QT
Date Sampled		18/06/2021
Type of sample		Soil
Date extracted	-	21/06/2021
Date analysed	-	22/06/2021
TRH C10 - C14	mg/kg	64
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	69
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	69
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	70
Surrogate o-Terphenyl	%	95

Acid Extractable metals in soil		
Our Reference		272095-1
Your Reference	UNITS	BH200-QT
Date Sampled		18/06/2021
Type of sample		Soil
Date prepared	-	22/06/2021
Date analysed	-	22/06/2021
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	4
Copper	mg/kg	56
Lead	mg/kg	24
Mercury	mg/kg	<0.1
Nickel	mg/kg	15
Zinc	mg/kg	170

Moisture		
Our Reference		272095-1
Your Reference	UNITS	BH200-QT
Date Sampled		18/06/2021
Type of sample		Soil
Date prepared	-	21/06/2021
Date analysed	-	22/06/2021
Moisture	%	10

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate Spike R				Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			21/06/2021	[NT]		[NT]	[NT]	21/06/2021	[NT]
Date analysed	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	109	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	109	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	113	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	104	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	108	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	111	[NT]
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	109	[NT]
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	121	[NT]		[NT]	[NT]	100	[NT]

QUALITY CONTROL: svTRH (C10-C40) in Soil				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			21/06/2021	[NT]			[NT]	21/06/2021	[NT]
Date analysed	-			22/06/2021	[NT]			[NT]	22/06/2021	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]			[NT]	130	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]			[NT]	122	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]			[NT]	130	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]			[NT]	130	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]			[NT]	122	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]			[NT]	130	[NT]
Surrogate o-Terphenyl	%		Org-020	103	[NT]	[NT]	[NT]	[NT]	125	[NT]

QUALITY CONTROL: Acid Extractable metals in soil				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	[NT]
Date analysed	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	[NT]
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	104	[NT]
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	98	[NT]
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	100	[NT]
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	[NT]
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	[NT]
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	104	[NT]
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	[NT]
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	101	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CERTIFICATE OF ANALYSIS 272273

Client Details	
Client	El Australia
Attention	Linda Xiao
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23668,2-8 Pilgrim Ave& 9-14 Albert Rd,Strathfield
Number of Samples	1 water
Date samples received	22/06/2021
Date completed instructions received	22/06/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	23/06/2021				
Date of Issue	23/06/2021				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 272273 Revision No: R00

Page | 1 of 10
vTRH(C6-C10)/BTEXN in Water		
Our Reference		272273-1
Your Reference	UNITS	GW-QT1
Date Sampled		21/06/2021
Type of sample		water
Date extracted	-	22/06/2021
Date analysed	-	22/06/2021
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	μg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	99
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	100

svTRH (C10-C40) in Water		
Our Reference		272273-1
Your Reference	UNITS	GW-QT1
Date Sampled		21/06/2021
Type of sample		water
Date extracted	-	23/06/2021
Date analysed	-	23/06/2021
TRH C10 - C14	μg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Surrogate o-Terphenyl	%	86

HM in water - total		
Our Reference		272273-1
Your Reference	UNITS	GW-QT1
Date Sampled		21/06/2021
Type of sample		water
Date prepared	-	23/06/2021
Date analysed	-	23/06/2021
Arsenic-Total	μg/L	2
Cadmium-Total	µg/L	<0.1
Chromium-Total	μg/L	<1
Copper-Total	µg/L	3
Lead-Total	μg/L	<1
Mercury-Total	µg/L	<0.05
Nickel-Total	μg/L	12
Zinc-Total	μg/L	37

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	
Date analysed	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	112	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	112	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	115	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	111	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	99	[NT]		[NT]	[NT]	100	
Surrogate toluene-d8	%		Org-023	100	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-023	102	[NT]		[NT]	[NT]	100	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			23/06/2021	[NT]		[NT]	[NT]	23/06/2021	[NT]
Date analysed	-			23/06/2021	[NT]		[NT]	[NT]	23/06/2021	[NT]
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	94	[NT]
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	99	[NT]
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	108	[NT]
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	94	[NT]
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	99	[NT]
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	108	[NT]
Surrogate o-Terphenyl	%		Org-020	83	[NT]	[NT]	[NT]	[NT]	95	[NT]

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			23/06/2021	[NT]		[NT]	[NT]	23/06/2021	[NT]
Date analysed	-			23/06/2021	[NT]		[NT]	[NT]	23/06/2021	[NT]
Arsenic-Total	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	[NT]
Cadmium-Total	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	103	[NT]
Chromium-Total	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	[NT]
Copper-Total	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	[NT]
Lead-Total	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	[NT]
Mercury-Total	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	106	[NT]
Nickel-Total	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	[NT]
Zinc-Total	µg/L	1	Metals-022	<1	[NT]	[NT]	[NT]	[NT]	102	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Certificate of Analysis

El Australia Suite 6.01, 55 Miller Street Pyrmont NSW 2009

Environment Testing

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:	Clare Madigan
Report	803985-AID
Project Name	2-6 PILGRIM AVE - STRATHFIELD NSW
Project ID	E23668
Received Date	Jun 18, 2021
Date Reported	Jun 22, 2021
Methodology:	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. <i>NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.</i>
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing ArXTA is a signatory to the ILAC Muttan Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Project Name Project ID	2-6 PILGRIM AVE - STRATHFIELD NSW F23668
Date Sampled	Jun 17, 2021
Report	803985-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH201-0.3-0.5	21-Jn36775	Jun 17, 2021	Approximate Sample 317g Sample consisted of: Brown coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH202-0.3-0.5	21-Jn36776	Jun 17, 2021	Approximate Sample 271g Sample consisted of: Brown coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH204M-0.3-0.5	21-Jn36777	Jun 17, 2021	Approximate Sample 323g Sample consisted of: Brown coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH203-0.4-0.5	21-Jn36778	Jun 17, 2021	Approximate Sample 35g Sample consisted of: Brown coarse-grained clayey soil and rocks bitumen	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing Site Extracted Sydney Jun 19, 2021

Holding Time Indefinite

	PULLA	20			Australia									New Zealand	
		Env	rironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261	Sydn Unit F 16 Mc Lane	ey 3, Buildii irs Road Cove We # 1261.2	ng F st NSW 9900 84	2066 2066 21 ≥ 2066 21 ≥ 2066	risbane 21 Small∿ urarrie QL ∖rone : +61 ∆TA # 126	vood Place .D 4172 1 7 3902 4600 31 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 PDO ne : +61 2 4968 8448 NATA # 1054 15; e.# - 55070	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
	0 000 000 07 I McD.	www.carollis.coll.a						1 # 210	117			000102 # 2010			
Adi Adi	mpany Name: dress:	El Australia Suite 6.01, { Pyrmont NSW 2009	55 Miller Stree	ţ			Order Repol Phone Fax:		ωO	303985 12 9516	0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 P Jun 22, 2021 2 Day Clare Madigan	×
Pro	oject Name: vject ID:	2-6 PILGRII E23668	M AVE - STRA	ATHFIELD NSV	>								Eurofins Analytical S	ervices Manager : Elv	vis Dsouza
		й	ample Detail		HOLD		Moisture Set	Eurofins Suite B7	Eurofins Suite B6	BTEX					
Melb	ourne Laborato	ory - NATA Site	e # 1254 & 142	271			┝								
Sydn	ley Laboratory	- NATA Site # 1	18217		×		×	×	×	×	×				
Brist	oane Laborator	y - NATA Site ≴	# 20794			+	$\left \right $								
Perth	1 Laboratory - I	NATA Site # 23	1736			+	-								
Mayf	ield Laboratory	<pre>/ - NATA Site #</pre>	125079			+	-								
Extel	rnal Laboratory														
٩	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
-	BH201-0.3-0.5	Jun 17, 2021		Soil	S21-Jn36775		×				×				
2	BH202-0.3-0.5	Jun 17, 2021		Soil	S21-Jn36776		×				×				
e	BH204M-0.3- 0.5	Jun 17, 2021		Soil	S21-Jn36777		×				×				
4	BH203-0.4-0.5	Jun 17, 2021		Soil	S21-Jn36778		×				×				
5	BH201-3.8-4.0	Jun 17, 2021		Soil	S21-Jn36779		×	×							
G	BH204M-1.8- 2.0	Jun 17, 2021		Soil	S21-Jn36780		×	×							
	BH200-QD	Jun 17, 2021		Soil	S21-Jn36781		×		×						
8	BH200-RS	Jun 17, 2021		Water	S21-Jn36782	_	_		×						

Date Reported: Jun 22, 2021

Page 4 of 9 Report Number: 803985-AID

:	PULLA	20		Australia								New Zealand	
•	CULUI	Environment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000	75 16 I Lar	Iney F3, Bui Mars Ro e Cove	ding F ad Vest NSV	W 2066	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 460	Perth 46-48 Banksia Road Welshpool WA 6106 0 Phone : +61 8 9251 9500	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
ABN: 50	005 085 521 web:	www.eurofins.com.au email: EnviroSal	les@eurofins.com	NATA # 1261 Site # 1254 & 14271	NA.	ne : +61 FA # 126	2 9900 8 1 Site #	8400 18217	NATA # 1261 Site # 207	94 NATA # 1261 Site # 23736	Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290
Cor Adc	npany Name: Iress:	El Australia Suite 6.01, 55 Miller Stree Pyrmont NSW 2009	ət			Ord Rep Pho Fax	er No ort #: ne:		803985 02 9516 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 F Jun 22, 2021 2 Day Clare Madigan	W
Pro	ject Name: ject ID:	2-6 PILGRIM AVE - STR/ E23668	ATHFIELD NSV	~							Eurofins Analytical S	tervices Manager : El	vis Dsouza
		Sample Detail			HOLD	втех	Moisture Set	Eurofine Suite B6	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals BTEX				
Melb	ourne Laborat	ory - NATA Site # 1254 & 14;	271										
Sydn	ey Laboratory	- NATA Site # 18217			×	×	×	^ ×	× ×				
Brisb	ane Laborator	y - NATA Site # 20794											
Perth	Laboratory -	NATA Site # 23736						_					
Mayf	eld Laborator	y - NATA Site # 25079											
Exter	nal Laborator		:				_		;				
6		Jun 17, 2021	Sol	SZ1-Jn36783		;			×				
10	TRIP BLANK	Jun 17, 2021	Soil	S21-Jn36785 c21 h36786	>	×							
10	BH201-1 8-2 0	Jun 17, 2021	Soil	S21-JIJ0700	< ×								
13	BH201-2.8-3.0	Jun 17, 2021	Soil	S21-Jn36788	: ×								
14	BH201-4.1-4.3	Jun 17, 2021	Soil	S21-Jn36789	×								
15	BH202-0.8-1.0	Jun 17, 2021	Soil	S21-Jn36790	×								
16	BH204M-0.8- 1.0	Jun 17, 2021	Soil	S21-Jn36791	×								
17	BH202-2.6-3.0	Jun 17. 2021	Soil	S21-Jn36792	×								

 \times

S21-Jn36793

Soil

18 BH202-3.8-4.0 Jun 17, 2021

Date Reported: Jun 22, 2021

Page 5 of 9 Report Number: 803985-AID

Por lo			Australia								New Zealand	
	Environment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000	Sydney Unit F3, 16 Mars Lane Co	Building Road /e West	F NSW 2066	Brisban 1/21 Sm Murarrie Phone :	ne nallwood Place ∋ QLD 4172 +617 3902 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
ABN: 50 005 085 521 web	: www.eurofins.com.au email: EnviroSale	ss@eurofins.com	NATA # 1261 Site # 1254 & 14271	Phone : NATA #	+61 2 99 1261 Site	00 8400 ∋ # 18217	NATA #	1261 Site # 20794	NATA # 1261 Site # 23736	Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ #1290
Company Name: Address:	El Australia Suite 6.01, 55 Miller Stree Pyrmont NSW 2009	T.		ΟΜΓЩ	rder N eport hone: ax:	.: .: .:	8039£ 02 95	85 16 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 P Jun 22, 2021 2 Day Clare Madigan	Σ
Project Name: Project ID:	2-6 PILGRIM AVE - STRA E23668	ATHFIELD NSV	~							Eurofins Analytical S	ervices Manager : El	vis Dsouza
	Sample Detail		HOLD	BTEX	Moisture Set	Eurofins Suite B7	BTEX	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals				
Melbourne Laborat	tory - NATA Site # 1254 & 142	271										
Sydney Laboratory	r - NATA Site # 18217		×	×	×	×	×	×				
Brisbane Laborato	ry - NATA Site # 20794											
Perth Laboratory -	NATA Site # 23736				\square		+					
Mayfield Laborator	y - NATA Site # 25079											
External Laborator	λ											
19 BH202-4.5-4.7	7 Jun 17, 2021	Soil	S21-Jn36794 X	_								
20 BHZU4IM-2.8- 3.0	Jun 17, 2021	201	X C8/05UL-126									
21 BH204M-3.8- 4.2	Jun 17, 2021	Soil	S21-Jn36796 ×									
22 BH204M-5.3- 5.5	Jun 17, 2021	Soil	S21-Jn36797 ×									
23 BH203-0.9-1.0) Jun 17, 2021	Soil	S21-Jn36798 X									
24 BH203-1.9-2.0) Jun 17, 2021	Soil	S21-Jn36799 X									
25 BH203-2.9-3.0) Jun 17, 2021	Soil	S21-Jn36800 X									
26 BH203-3.9-4.0) Jun 17, 2021	Soil	S21-Jn36801 X									
27 BH201-0.8-1.0) Jun 17, 2021	Soil	S21-Jn36869 X				-					

Date Reported: Jun 22, 2021

Page 6 of 9 Report Number: 803985-AID

i junutiv		Australia								New Zealand		
ABN: 50 005 085 521 web: w	Environment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 1254 & 14271	Sydney Unit F3 16 Mar 16 Mar 16 Mar Lane C Phone NATA #	, Building s Road ove Wes +61 2 9	I F t NSW 20 900 8400 te # 1821	Bris 1/21 Mur 1/21 066 Pho NAT	<pre>bane Smallwood Place arrie QLD 4172 ne : +61 7 3902 4600 A # 1261 Site # 2079</pre>	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 44 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 PO Box 60 Wickham 2293 NATA # 1/261 Site # 25079 NATA # 1/261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290	675
Company Name: Address:	El Australia Suite 6.01, 55 Miller Street Pvrmont		011	Order I Report	 2 #	80	3985 9516 0722		Received: Due: Priority:	Jun 18, 2021 3:05 F Jun 22, 2021 2 Dav	W	
Project Name: Project ID:	NSW 2009 2-6 PILGRIM AVE - STRATHFIELD NSV E23668		-	ax:		5			Contact Name: Eurofins Analytical S	Clare Madigan ervices Manager : El	vis Dsouza	
	Sample Detail	HOLD	BTEX	Moisture Set	Eurofins Suite B7	Eurofins Suite B6	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals BTEX					
Melbourne Laborato	rrv - NATA Site # 1254 & 14271											
Sydney Laboratory -	- NATA Site # 18217	~	×	×	×	×	××					
Brisbane Laboratory	/ - NATA Site # 20794											
Perth Laboratory - N	IATA Site # 23736											
Mayfield Laboratory	- NATA Site # 25079											
External Laboratory												
Test Counts		-	7 1	7	2	2	1 4					

Internal Quality Control Review and Glossary

General

Units

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

grams per kilogram

fibres/mL

L/min

fibres/100 graticule areas

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight basis Filter loading: Reported Concentration: Flowrate: Terms Dry Sample is dried by heating and the porting LOR Limit of Reporting

1 cm iii	
Dry	Sample is dried by heating prior to analysis
LOR	Limit of Reporting
coc	Chain of Custody
SRA	Sample Receipt Advice
ISO	International Standards Organisation
AS	Australian Standards
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)
NEPM	National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.
AF	Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as equivalent to "non-bonded / friable".
FA	Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Comments

Jn36778: The sample received was not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-sample to be analysed accurately represented the sample received.

N/A
Yes
No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Authorised by:

Chamath JHM Annakkage

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

11/11/

ac-mr/

"Intal

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

NATA Accredited Accreditation Number 1261 Site Number 18217

El Australia Suite 6.01, 55 Miller Street Pyrmont NSW 2009

Attention:

Clare Madigan

Report Project name Project ID Received Date 803985-S 2-6 PILGRIM AVE - STRATHFIELD NSW E23668 Jun 18, 2021

Client Sample ID			BH201-0.3-0.5	BH202-0.3-0.5	BH204M-0.3- 0.5	BH203-0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn36775	S21-Jn36776	S21-Jn36777	S21-Jn36778
Date Sampled			Jun 17, 2021	Jun 17, 2021	Jun 17, 2021	Jun 17, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	140
TRH C29-C36	50	mg/kg	88	< 50	< 50	71
TRH C10-C36 (Total)	50	mg/kg	88	< 50	< 50	211
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	180
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	180
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	105	98	103	98
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			PH201 0 2 0 5	BH303 0 3 0 5	BH204M-0.3-	PH202 0 4 0 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn36775	S21-Jn36776	S21-Jn36777	S21-Jn36778
Date Sampled			Jun 17, 2021	Jun 17, 2021	Jun 17, 2021	Jun 17, 2021
Test/Reference	LOP	Linit				
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
	0.5	ma/ka	< 0.5	< 0.5	< 0.5	0.6
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrepe	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	0.6
Total PAH*	0.5	ma/ka	< 0.5	< 0.5	< 0.5	1.2
2-Fluorobiphenyl (surr.)	1	%	103	89	89	122
p-Terphenyl-d14 (surr.)	1	%	102	91	93	124
Organochlorine Pesticides						
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
4 4'-DDD	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4 4'-DDF	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	107	87	86	117
Tetrachloro-m-xylene (surr.)	1	%	124	104	107	INT
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimetnoate	0.2	_ mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			BH201-0.3-0.5	BH202-0.3-0.5	BH204M-0.3- 0.5	BH203-0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn36775	S21-Jn36776	S21-Jn36777	S21-Jn36778
Date Sampled		1	Jun 17. 2021	Jun 17, 2021	Jun 17, 2021	Jun 17. 2021
Test/Reference	LOR	Unit	,	, i	, i	
Organophosphorus Pesticides	2011	0.111				
Disulfoton	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	88	84	85	102
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Arocior-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Arocior-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutulablarandata (aurr.)	0.5	тт <u>д/кд</u>	< 0.5	< 0.5	< 0.5	< 0.5
	1	70 0/	107	07	107	
	I	70	124	104	107	
	2	malka	10	0.2	10	0.6
Alsenic	2	mg/kg	12	9.2	10	9.0
Chromium	5	mg/kg	< 0.4 35	28	32	< 0.4 24
Copper	5	mg/kg	03	55	15	24
Lead	5	mg/kg	9.0 63	220	20	180
Mercury	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	ma/ka	< 5	68	< 5	8.2
Zinc	5	ma/ka	22	27	14	61
	~					
% Moisture	1	%	19	21	20	13

Client Sample ID			BH201-3.8-4.0	BH204M-1.8- 2.0	BH200-QD	TRIP SPIKE
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn36779	S21-Jn36780	S21-Jn36781	S21-Jn36783
Date Sampled			Jun 17, 2021	Jun 17, 2021	Jun 17, 2021	Jun 17, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	55	< 20	60	-
TRH C15-C28	50	mg/kg	170	< 50	170	-
TRH C29-C36	50	mg/kg	63	< 50	63	-
TRH C10-C36 (Total)	50	mg/kg	288	< 50	293	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	29	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	29	-
TRH >C10-C16	50	mg/kg	58	< 50	64	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	58	< 50	64	-
TRH >C16-C34	100	mg/kg	190	< 100	180	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	248	< 100	244	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	107	113	104	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	106	76	-	-
p-lerphenyl-d14 (surr.)	1	%	107	74	-	-
Heavy Metals						
Arsenic	2	mg/kg	2.6	22	< 2	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	6.9	31	< 5	-
Copper	5	mg/kg	31	29	38	-

Client Sample ID Sample Matrix Eurofins Sample No.			BH201-3.8-4.0 Soil S21-Jn36779	BH204M-1.8- 2.0 Soil S21-Jn36780	BH200-QD Soil S21-Jn36781	TRIP SPIKE Soil S21-Jn36783
Date Sampled			Jun 17, 2021	Jun 17, 2021	Jun 17, 2021	Jun 17, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	15	32	19	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	7.6	< 5	11	-
Zinc	5	mg/kg	65	15	180	-
% Moisture	1	%	8.2	14	7.7	-
BTEX						
Benzene	1	%	-	-	-	92
Ethylbenzene	1	%	-	-	-	85
m&p-Xylenes	1	%	-	-	-	85
o-Xylene	1	%	-	-	-	86
Toluene	1	%	-	-	-	88
Xylenes - Total	1	%	-	-	-	85
4-Bromofluorobenzene (surr.)	1	%	-	-	-	103

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TRIP BLANK Soil S21-Jn36785 Jun 17, 2021
Test/Reference	LOR	Unit	
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	110

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jun 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 18, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Jun 21, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Jun 21, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Jun 21, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Jun 21, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jun 18, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	PILLOFI	20			Australia									New Zealand	
•		Envi	ronment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000	Sydne Unit F 16 Ma Lane	y 3, Buildir rs Road Cove We	ng F st NSW	2066 M - 1 B	risbane 21 Smallv urarrie QL hone : +6	vood Place D 4172 I 7 3902 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
ABN: 5	005 085 521 web: 1	www.eurofins.com.au	email: EnviroSal∈	ss@eurofins.com	NATA # 1261 Site # 1254 & 14271	Phone NATA	:: +61 2 # 1261 \$	9900 84 Site # 18	00 N	ATA # 126	31 Site # 20794	NATA # 1261 Site # 23736	Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290
o Pd C	mpany Name: dress:	EI Australia Suite 6.01, 5: Pyrmont NSW 2009	5 Miller Stree				Order Repol Phon		00	303985 32 9516	0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 P Jun 22, 2021 2 Day Clare Madigan	×
Prc	oject Name: oject ID:	2-6 PILGRIN E23668	1 AVE - STRA	THFIELD NSW	~								Eurofins Analytical S	ervices Manager : Elv	vis Dsouza
		Sa	mple Detail				Moisture Set	Eurofins Suite B7	Eurofins Suite B6	BTEX					
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	11											
Sydn	ey Laboratory	- NATA Site #1	8217			^ ×	×	×	×	×	×				
Brist	ane Laboraton	y - NATA Site #	20794												
Perth	Laboratory - N	JATA Site # 237	36				_								
Mayf	ield Laboratory	- NATA Site #	25079				_								
Exte	mal Laboratory					_	_								
°N N	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
-	BH201-0.3-0.5	Jun 17, 2021		Soil	S21-Jn36775		×				×				
2	BH202-0.3-0.5	Jun 17, 2021		Soil	S21-Jn36776		×				×				
e	BH204M-0.3- 0.5	Jun 17, 2021		Soil	S21-Jn36777		×				×				
4	BH203-0.4-0.5	Jun 17, 2021		Soil	S21-Jn36778		×				×				
5	BH201-3.8-4.0	Jun 17, 2021		Soil	S21-Jn36779		×	×							
9	BH204M-1.8- 2.0	Jun 17, 2021		Soil	S21-Jn36780		×	×							
~	BH200-QD	Jun 17, 2021		Soil	S21-Jn36781		×		×						
8	BH200-RS	Jun 17, 2021		Water	S21-Jn36782				×						

Page 7 of 20

	iforne	10			Australia									New Zealand		
•		Enviro	nment T	esting	Melbourne 6 Monterey Road Dandenong South VIC 317: Phone : +61 3 8564 5000 NATA # 1324	Sydn Unit F Lane Lane	3, Buildi 3, Buildi rs Road Cove W	ng F sst NSW	2066 F 1	3risbane //21 Sma /lurarrie (Phone : +	Iwood Place NLD 4172 81 7 3902 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 MATA # 105	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wicham 2293 Doxon - 464 7 4068 9448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +649 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 MMT # 4 2000	
ABN: 50 (105 085 521 web: v	ww.eurofins.com.au em	ail: EnviroSales@	@eurofins.com	Site # 1254 & 14271	NATA NATA	# 1261	site # 18	3217	- # 4 - 4	701 316 # 201 34	Site # 23736	NATA # 1261 Site # 25079	1701 # 711141		
Com Addr	pany Name: ess:	EI Australia Suite 6.01, 55 M Pyrmont NSW 2009	filler Street				Ordel Repo Phon Fax:	t e: #:		80398! 02 951	5 6 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 P Jun 22, 2021 2 Day Clare Madigan	W	
Projé Projé	ect Name: tct ID:	2-6 PILGRIM AV E23668	/E - STRATI	HFIELD NSW	>								Eurofins Analytical S	services Manager : El	vis Dsouza	
		Samp	le Detail			HOLD	Moisture Set	Eurofins Suite B7	Eurofins Suite B6	BTEX	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals					
Melbo	urne Laborato	ry - NATA Site #1	254 & 1427	-		-	-	-								
Sydne	v Laboratory -	NATA Site # 182	17			×	×	×	×	×	×					
Brisba	ne Laboratory	- NATA Site # 20	794			-	_									
Perth	-aboratory - N	ATA Site # 23736														
Mayfie	Id Laboratory	- NATA Site # 250	179													
Extern	al Laboratory															
6 1	RIP SPIKE	Jun 17, 2021	0	Soil	S21-Jn36783					×						
10 L	RIP SPIKE AB	Jun 17, 2021	0	Soil	S21-Jn36784					×						
11 T	RIP BLANK	Jun 17, 2021	0	Soil	S21-Jn36785		~									
12 B	H202-1.8-2.0	Jun 17, 2021	0	Soil	S21-Jn36786	×										
13 B	H201-1.8-2.0	Jun 17, 2021	0	Soil	S21-Jn36787	×										
14 B	H201-2.8-3.0	Jun 17, 2021	0	Soil	S21-Jn36788	×										
15 E	H201-4.1-4.3	Jun 17, 2021	0	Soil	S21-Jn36789	×										
16 E	H202-0.8-1.0	Jun 17, 2021	0	Soil	S21-Jn36790	×										
17 E	H204M-0.8- .0	Jun 17, 2021	0	Soil	S21-Jn36791	×										

Page 8 of 20

17

rofi	NC		Australia								New Zealand	
	Envi	ironment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000	Sydn Unit F 16 Ma Lane	3, Buildi S, Buildi rs Road Cove We	ng F set NSW	2066 5	3risbane /21 Smallwood Place //urarrie QLD 4172 ⁹ hone : +61 7 3902 46	Perth 46-48 Banksia Road Welshpool WA 6106 500 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
5521 web	: www.eurofins.com.au	ı email: EnviroSales@eurofins.com	NATA # 1261 Site # 1254 & 14271	Phone NATA	:: +61 2 # 1261 :	9900 84 Site # 18	217	JATA # 1261 Site # 2	0794 NATA # 1261 Site # 23736	Phone:+61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290
v Name:	El Australia Suite 6.01, 5 Pyrmont NSW 2009	5 Miller Street			Order Repo Phon Fax:			803985 02 9516 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 F Jun 22, 2021 2 Day Clare Madigan	W
ame: D:	2-6 PILGRIN E23668	1 AVE - STRATHFIELD NSV	~							Eurofins Analytical S	services Manager : El	vis Dsouza
	ů	mple Detail	HOLD		Moisture Set	Eurofins Suite B7	Eurofins Suite B6	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals BTEX				
Laborat	ory - NATA Site	#1254 & 14271		+	┢							
oratory	- NATA Site #1	8217	^		×	×	×	××				
aborato	ry - NATA Site #	20794										
ratory -	NATA Site # 237	736										
aborator	y - NATA Site #	25079										
aborator	V											
2-2.6-3.0	Jun 17, 2021	Soil	S21-Jn36792 >									
2-3.8-4.0	Jun 17, 2021	Soil	S21-Jn36793 >	×								
2-4.5-4.7	7 Jun 17, 2021	Soil	S21-Jn36794 >	×								
4M-2.8-	Jun 17, 2021	Soil	S21-Jn36795	×								
4M-3.8-	Jun 17, 2021	Soil	S21-Jn36796	×								
4M-5.3-	Jun 17, 2021	Soil	S21-Jn36797	×								
3-0.9-1.0	Jun 17, 2021	Soil	S21-Jn36798									
3-1.9-2.0	Jun 17, 2021	Soil	S21-Jn36799 >		_							
3-2.9-3.0	Jun 17, 2021	Soil	S21-Jn36800 >		_	_						

Page 9 of 20

AINOFIN		Australia								New Zealand	
	Environment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261	Sydne Unit F3 16 Mai Lane O	y 3, Buildir rs Road Sove We	g F st NSW 20	Bris 1/21 Mur 66 Pho	bane Smallwood Pla arrie QLD 4172 ne : +61 7 3902 ^ # 1261 Site #	Perth ace 46-48 Banksia Road 2 000 Phone :+61 8 9251 9600 # 27704 NaT∆ # 1254	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Boon 60 Wickham 2293 Phone - +61 2 468 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 14N7 # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IAN7 # 1200
ABN: 50 005 085 521 web: w	ww.eurofins.com.au email: EnviroSales@eurofins.com	Site # 1254 & 14271	NATA	# 1261 S	site # 1821	2		site # 23736	NATA # 1261 Site # 25079		
Company Name: Address:	El Australia Suite 6.01, 55 Miller Street Pyrmont NSW 2009			Order Repor Phone Fax:	: # No.: : # ::	80	3985 9516 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 F Jun 22, 2021 2 Day Clare Madigan	We
Project Name: Project ID:	2-6 PILGRIM AVE - STRATHFIELD NS\ E23668	2							Eurofins Analytical S	services Manager : El	vis Dsouza
	Sample Detail		BTEX	Moisture Set	Eurofins Suite B7	Eurofins Suite B6	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals BTEX				
Melbourne Laborator	y - NATA Site # 1254 & 14271		┝	┝		F					
Sydney Laboratory -	NATA Site # 18217		×	×	×	×	×				
Brisbane Laboratory	- NATA Site # 20794										
Perth Laboratory - N/	ATA Site # 23736										
Mayfield Laboratory -	- NATA Site # 25079										
External Laboratory											
27 BH203-3.9-4.0	Jun 17, 2021 Soil	S21-Jn36801	×								
28 BH201-0.8-1.0	Jun 17, 2021 Soil	S21-Jn36869	×								
Test Counts			7 1	7	2	2	2 4				

Page 10 of 20

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks. Duplicates. Matrix Spikes. and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PEASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank			 •		
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank		1	 1	-	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Arocior-1254	mg/kg	< 0.5	0.5	Pass	
Arocior-1260	mg/kg	< 0.5	0.5	Pass	
LIOTAI PCB*	mg/kg	< 0.5	0.5	Pass	1

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					-	
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery					-	
Total Recoverable Hydrocarbons						
TRH C6-C9	%	93		70-130	Pass	
TRH C10-C14	%	95		70-130	Pass	
Naphthalene	%	83		70-130	Pass	
TRH C6-C10	%	92		70-130	Pass	
TRH >C10-C16	%	90		70-130	Pass	
LCS - % Recovery				_		
BTEX	-					
Benzene	%	87		70-130	Pass	
Toluene	%	87		70-130	Pass	
Ethylbenzene	%	86		70-130	Pass	
m&p-Xylenes	%	88		70-130	Pass	
o-Xylene	%	88		70-130	Pass	
Xylenes - Total*	%	88		70-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	89		70-130	Pass	
Acenaphthylene	%	90		70-130	Pass	
Anthracene	%	88		70-130	Pass	
Benz(a)anthracene	%	81		70-130	Pass	
Benzo(a)pyrene	%	85		70-130	Pass	
Benzo(b&j)fluoranthene	%	90		70-130	Pass	
Benzo(g.h.i)perylene	%	75		70-130	Pass	
Benzo(k)fluoranthene	%	96		70-130	Pass	
Chrysene	%	85		70-130	Pass	
Dibenz(a.h)anthracene	%	73		70-130	Pass	
Fluoranthene	%	86		70-130	Pass	
Fluorene	%	81		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	76		70-130	Pass	
Naphthalene	%	91		70-130	Pass	
Phenanthrene	%	89		70-130	Pass	
Pyrene	%	86		70-130	Pass	
LCS - % Recovery		i	ı	1	I	
Organochlorine Pesticides						
Chlordanes - Total	%	85		70-130	Pass	
4.4'-DDD	%	77		70-130	Pass	
4.4'-DDE	%	91		70-130	Pass	
4.4'-DDT	%	76		70-130	Pass	
a-BHC	%	81		70-130	Pass	
Aldrin	%	88		70-130	Pass	
b-BHC	%	81		70-130	Pass	
d-BHC	%	83		70-130	Pass	
Dieldrin	%	84		70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan I			%	84	70-130	Pass	
Endosulfan II			%	81	70-130	Pass	
Endosulfan sulphate			%	78	70-130	Pass	
Endrin			%	74	70-130	Pass	
Endrin aldehyde			%	71	70-130	Pass	
Endrin ketone			%	75	70-130	Pass	
g-BHC (Lindane)			%	85	70-130	Pass	
Heptachlor			%	77	70-130	Pass	
Heptachlor epoxide			%	81	70-130	Pass	
Hexachlorobenzene			%	87	70-130	Pass	
Methoxychlor			%	73	70-130	Pass	
LCS - % Recovery				1	 1	r	
Organophosphorus Pesticides							
Diazinon			%	107	70-130	Pass	
Dimethoate			%	73	70-130	Pass	
Ethion			%	90	70-130	Pass	
Fenitrothion			%	88	70-130	Pass	
Methyl parathion			%	106	70-130	Pass	
Mevinphos			%	108	70-130	Pass	
LCS - % Recovery							
Polychlorinated Biphenyls							
Aroclor-1016			%	89	70-130	Pass	
Aroclor-1260			%	91	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	96	80-120	Pass	
Cadmium			%	101	80-120	Pass	
Chromium			%	102	80-120	Pass	
Copper			%	105	80-120	Pass	
Lead			%	106	80-120	Pass	
Mercury			%	107	80-120	Pass	
Nickel			%	105	80-120	Pass	
Zinc			%	106	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1			
Total Recoverable Hydrocarbons				Result 1			
TRH C10-C14	S21-Jn37516	NCP	%	118	70-130	Pass	
TRH >C10-C16	S21-Jn37516	NCP	%	111	70-130	Pass	
Spike - % Recovery					 •	•	
Polycyclic Aromatic Hydrocarbons	;			Result 1			
Acenaphthene	S21-Jn36181	NCP	%	87	70-130	Pass	
Acenaphthylene	S21-Jn36181	NCP	%	72	70-130	Pass	
Anthracene	S21-Jn36181	NCP	%	77	70-130	Pass	
Benz(a)anthracene	S21-Jn36181	NCP	%	82	70-130	Pass	
Benzo(a)pyrene	S21-Jn36181	NCP	%	84	70-130	Pass	
Benzo(b&j)fluoranthene	S21-Jn36181	NCP	%	117	70-130	Pass	
Benzo(g.h.i)perylene	S21-Jn30191	NCP	%	99	70-130	Pass	
Benzo(k)fluoranthene	S21-Jn36181	NCP	%	117	70-130	Pass	
Chrysene	S21-Jn36181	NCP	%	106	70-130	Pass	
Dibenz(a.h)anthracene	S21-Jn30191	NCP	%	83	70-130	Pass	
Fluoranthene	S21-Jn36181	NCP	%	125	70-130	Pass	
Fluorene	S21-Jn40852	NCP	%	89	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Jn40852	NCP	%	75	70-130	Pass	
Naphthalene	S21-Jn36181	NCP	%	91	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene	S21-Jn36181	NCP	%	108			70-130	Pass	
Pyrene	S21-Jn40852	NCP	%	91			70-130	Pass	
Spike - % Recovery									
Organochlorine Pesticides				Result 1					
Chlordanes - Total	S21-Jn40852	NCP	%	80			70-130	Pass	
4.4'-DDE	S21-Jn40852	NCP	%	84			70-130	Pass	
a-BHC	S21-Jn40852	NCP	%	73			70-130	Pass	
Aldrin	S21-Jn40852	NCP	%	82			70-130	Pass	
b-BHC	S21-Jn40852	NCP	%	73			70-130	Pass	
d-BHC	S21-Jn40852	NCP	%	77			70-130	Pass	
Dieldrin	S21-Jn40852	NCP	%	78			70-130	Pass	
Endosulfan I	S21-Jn40852	NCP	%	75			70-130	Pass	
Endosulfan II	S21-Jn40852	NCP	%	74			70-130	Pass	
g-BHC (Lindane)	S21-Jn40852	NCP	%	80			70-130	Pass	
Hexachlorobenzene	S21-Jn40852	NCP	%	85			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	S21-Jn40852	NCP	%	80			70-130	Pass	
Aroclor-1260	S21-Jn40852	NCP	%	85			70-130	Pass	
Spike - % Recovery								-	
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S21-Jn40713	NCP	%	103			70-130	Pass	
Naphthalene	S21-Jn40713	NCP	%	96			70-130	Pass	
TRH C6-C10	S21-Jn40713	NCP	%	101			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S21-Jn40713	NCP	%	96			70-130	Pass	
Toluene	S21-Jn40713	NCP	%	95			70-130	Pass	
Ethylbenzene	S21-Jn40713	NCP	%	97			70-130	Pass	
m&p-Xylenes	S21-Jn40713	NCP	%	98			70-130	Pass	
o-Xylene	S21-Jn40713	NCP	%	98			70-130	Pass	
Xylenes - Total*	S21-Jn40713	NCP	%	98			70-130	Pass	
Spike - % Recovery				i			1	i	
Heavy Metals				Result 1					
Arsenic	S21-Jn36780	CP	%	92			75-125	Pass	
Cadmium	S21-Jn36780	CP	%	94			75-125	Pass	
Chromium	S21-Jn36780	CP	%	90			75-125	Pass	
Copper	S21-Jn36780	CP	%	94			75-125	Pass	
Lead	S21-Jn36780	CP	%	88			75-125	Pass	
Mercury	S21-Jn36780	CP	%	97			75-125	Pass	
Nickel	S21-Jn36780	CP	%	91			75-125	Pass	
Zinc	S21-Jn36780	CP	%	90			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
Total Recoverable Hydrocarbons	1			Result 1	Result 2	RPD			
TRH C6-C9	S21-Jn40848	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-Jn39211	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Jn39211	NCP	mg/kg	240	200	19	30%	Pass	
TRH C29-C36	S21-Jn39211	NCP	mg/kg	360	300	19	30%	Pass	
Naphthalene	S21-Jn40848	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Jn40848	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-Jn39211	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Jn39211	NCP	mg/kg	510	420	19	30%	Pass	
TRH >C34-C40	S21-Jn39211	NCP	mg/kg	150	120	23	30%	Pass	

BTEX Description Set 1-M0688 NCP mg/k Col. Col. Col. Set 1 Tolucno S21-M0688 NCP mg/k Col. Col. Col. Set 1 30% Pass Etryblenzence S21-M0688 NCP mg/k Col. Col. Col. Set 1 30% Pass Cylence S21-M0688 NCP mg/k Col. Col. Set 1 30% Pass Daylicate S21-Mo688 NCP mg/k Col. Col. Set 1 30% Pass Daylicate Persystit Aromatic Hydrocarbons Result 1 Result 2 RPO N Pass Acenaptitylene S21-M36775 CP mg/k Col.5 Col.	Duplicate										
Berzon S21-140648 NCP mg/kg < 0.1 < <1 30% Pass Etydbergen S21-140648 NCP mg/kg < 0.1	BTEX				Result 1	Result 2	RPD				
Toluene S21-Jan60488 NOP mg/kg < 0.1 < <1 30% Pass Ethydhenzane S21-Jan60488 NOP mg/kg < 0.1	Benzene	S21-Jn40848	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
Etybenzane S21-Jan0388 NCP mgkg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	Toluene	S21-Jn40848	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
måp-Xylenes S21-Jan0648 NCP mgkg < 0.2 < 0.2 < 1 30% Pass Öxylene S21-Jan0648 NCP mgkg < 0.1	Ethylbenzene	S21-Jn40848	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
o-Xylene S21-Jn40848 NCP mg/kg < 0.1 < 1 30% Pass Xylenes - Total S21-Jn40848 NCP mg/kg < 0.3	m&p-Xylenes	S21-Jn40848	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass		
Xylanes-Total* S21-Jn40848 NCP mg/kg < 0.3 < 1 30% Pass Daplacet Pelycytit Aromatic Hydrocarbons Result 1 Result 2 RPD Acenaphthylene S21-Jn36775 CP mg/kq < 0.5	o-Xvlene	S21-Jn40848	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass		
Duplicate Number of the second	Xvlenes - Total*	S21-Jn40848	NCP	ma/ka	< 0.3	< 0.3	<1	30%	Pass		
Polycyclic Aromatic Hydrocarbons Result 1 Result 2 RPD Image: Construct 1 Acenaphthene S21-Jn36775 CP mgkq < 0.5	Duplicate										
Acensphthene S21-Jn38775 CP mgkg <0.5 <1 30% Pass Acensphthylene S21-Jn36775 CP mgkg <0.5	Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD				
Acensphthylene S21-Jn38775 CP mgkg <0.5 <1 30% Pass Anthracene S21-Jn36775 CP mgkg <0.5	Acenaphthene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Anthracene S21-Jn38775 CP mgkg <0.5 <1 30% Pass Benzolapartnacene S21-Jn36775 CP mgkg <0.5	Acenaphthylene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Benz(a)anthracene S21-Jn38775 CP mgkg <0.5 <1 30% Pass Benzola)pyrene S21-Jn36775 CP mgkg <0.5	Anthracene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Benzo(a)pyrene S21-Jn36775 CP mg/kg < 0.5 < 1 30% Pass Benzo(a)/Juparthene S21-Jn36775 CP mg/kg < 0.5	Benz(a)anthracene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Berzolds/liveranthene S21-Jn36775 CP mg/kg <0.5 <1 30% Pass Berzolds/liveranthene S21-Jn36775 CP mg/kg <0.5	Benzo(a)pyrene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Benzolg.1.i)perylene S21-Jn36775 CP mg/kg < 0.5 < 1 30% Pass Benzolg.1.i)perylene S21-Jn36775 CP mg/kg < 0.5	Benzo(b&i)fluoranthene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Descripting Dist Dist Dist Dist Dist Dist Dist Dist Berzack/Rindoranthene S21-Jn38775 CP mg/kg < 0.5	Benzo(a h i)pervlene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Discription Dist Disord Discription Discription <thdiscription< th=""> <thdiscription< th=""></thdiscription<></thdiscription<>	Benzo(k)fluoranthene	S21- In36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Dipber(a) hightfracene Sci. hightfräg CP mg/kg < 0.5 < 0.5 < 1 30% Pass Fluoranthene S21-Jin38775 CP mg/kg < 0.5	Chrysene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Instruction Earl - Inde775 CP mg/kg Fluorene \$21-Jn36775 CP mg/kg <0.5	Dibenz(a,h)anthracene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Internation Earl Analysis CP mgkng Co.05 Co.05 Cl. Solution Indenci (1.2.3-od)pyrene S21-Jn36775 CP mg/kg <0.5	Fluoranthene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Inden(1,2,3-cd)pyrene S1 Jun36775 CP mg/kg <td>Fluorene</td> <td>S21-Jn36775</td> <td>CP</td> <td>ma/ka</td> <td>< 0.5</td> <td>< 0.5</td> <td><1</td> <td>30%</td> <td>Pass</td> <td></td>	Fluorene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Instruction Gal Magning Gal Magning <thgal magning<="" th=""> <thgal magning<="" th=""></thgal></thgal>	Indeno(1,2,3-cd)pyrene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Instruction Data instruction Data instruction Data instruction Data instruction Data instruction Pyrene S21-Jn36775 CP mg/kg < 0.5	Naphthalene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Instruction Data Private Display Obs Obs Ots Ots Ots Ots Ots Ots Pass Duplicate B S21-Jn36775 CP S21-Jn36775 CP S21-Jn36775 CP S21-Jn36775 CP mg/kg S21-Jn36775 CP mg/kg Colspan="4">S21-Jn36775 CP mg/kg Colspan="4">Colspan="4">Colspan="4">Cols Colspan="4">Colspan="4">Cols Colspan="4">Colspan="4">Cols Colspan="4">Cols Colspan="4">Colspan="4">Cols Colspan="4">Colspan="4"Colspan="4" <td c<="" td=""><td>Phenanthrene</td><td>S21-Jn36775</td><td>CP</td><td>ma/ka</td><td>< 0.5</td><td>< 0.5</td><td><1</td><td>30%</td><td>Pass</td><td></td></td>	<td>Phenanthrene</td> <td>S21-Jn36775</td> <td>CP</td> <td>ma/ka</td> <td>< 0.5</td> <td>< 0.5</td> <td><1</td> <td>30%</td> <td>Pass</td> <td></td>	Phenanthrene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Diplicate Diplicate Result 1 Result 2 RPD Result 2 Chiordanes - Total S21-Jn36775 CP mg/kg < 0.05	Pyrene	S21-Jn36775	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass		
Organochlorine Pesticides Result 1 Resu	Duplicate	0210100110	0.	mg/ng	0.0	0.0		0070	1 400		
Organization Distant Possant Possant Possant 4.4-DDD \$21-Jn36775 CP mg/kg <0.1	Organochlorine Pesticides				Result 1	Result 2	RPD				
Ar-DDD S1-1.n36775 CP mg/kg Co.5 <1 30% Pass 4.4°-DD S21-Jn36775 CP mg/kg <0.05	Chlordanes - Total	S21-Jn36775	CP	ma/ka	< 0.1	< 0.1	<1	30%	Pass		
At-DDE S21-Jn36775 CP mg/kg C.0.5 At-DD 4.4'-DDT S21-Jn36775 CP mg/kg < 0.05		S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
A4-DDT S21-Ji36775 CP mg/kg < 0.05 < 1 30% Pass a-BHC S21-Ji36775 CP mg/kg < 0.05	4 4'-DDF	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
a-BHC S21-Jia36775 CP mg/kg <0.05 <1 30% Pass Aldrin S21-Jia36775 CP mg/kg <0.05	4 4'-DDT	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Aldrin S21-Jn36775 CP mg/kg < 0.05 < 1.05 < 1.05 Pass b-BHC S21-Jn36775 CP mg/kg < 0.05	a-BHC	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
b-BHC S21-Jn36775 CP mg/kg < 0.05 < 1 30% Pass d-BHC S21-Jn36775 CP mg/kg < 0.05	Aldrin	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
d-BHC S21-Jn36775 CP mg/kg < 0.05 < 1 30% Pass Dieldrin S21-Jn36775 CP mg/kg < 0.05	b-BHC	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Dieldrin S21-Jn36775 CP mg/kg < 0.05 < 1 30% Pass Endosulfan I S21-Jn36775 CP mg/kg < 0.05	d-BHC	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Endosulfan I S21-Jn36775 CP mg/kg < 0.05 < 1 30% Pass Endosulfan II S21-Jn36775 CP mg/kg < 0.05	Dieldrin	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Britosoftan II S21-Jn36775 CP mg/kg < 0.05 < 1 30% Pass Endosulfan II S21-Jn36775 CP mg/kg < 0.05	Endosulfan I	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
International Description Description Description Description Endosulfan sulphate S21-Jn36775 CP mg/kg < 0.05	Endosulfan II	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Endrin S21-Jn36775 CP mg/kg < 0.05 < 0.05 < 1 30% Pass Endrin aldehyde S21-Jn36775 CP mg/kg < 0.05	Endosulfan sulphate	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Endrin aldehyde S21-Jn36775 CP mg/kg < 0.05 < 0.05 < 1 30% Pass Endrin ketone S21-Jn36775 CP mg/kg < 0.05	Endrin	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Endrin ketone S21-Jn36775 CP mg/kg < 0.05 < 0.05 < 1 30% Pass g-BHC (Lindane) S21-Jn36775 CP mg/kg < 0.05	Endrin aldehvde	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
g-BHC (Lindane) S21-Jn36775 CP mg/kg < 0.05 < 1 30% Pass Heptachlor S21-Jn36775 CP mg/kg < 0.05	Endrin ketone	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Bend (anish) S21-Jn36775 CP mg/kg < 0.05 < 1 30% Pass Heptachlor S21-Jn36775 CP mg/kg < 0.05	g-BHC (Lindane)	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Heptachlor epoxide S21-Jn36775 CP mg/kg < 0.05 < 0.05 < 1 30% Pass Hexachlorobenzene S21-Jn36775 CP mg/kg < 0.05	Heptachlor	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Hexachlorobenzene S21-Jn36775 CP mg/kg < 0.05 < 0.05 < 1 30% Pass Methoxychlor S21-Jn36775 CP mg/kg < 0.2	Heptachlor epoxide	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Methoxychlor S21-Jn36775 CP mg/kg < 0.2 < 1 30% Pass Duplicate Crganophosphorus Pesticides Result 1 Result 2 RPD Azinphos-methyl S21-Jn36775 CP mg/kg < 0.2	Hexachlorobenzene	S21-Jn36775	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass		
Duplicate Result 1 Result 2 RPD Image Azinphos-methyl S21-Jn36775 CP mg/kg < 0.2	Methoxychlor	S21-Jn36775	CP	ma/ka	< 0.2	< 0.2	<1	30%	Pass		
Organophosphorus Pesticides Result 1 Result 2 RPD Image: Constraint of the system of the syst	Duplicate										
Azinphos-methyl S21-Jn36775 CP mg/kg < 0.2 < 0.2 < 1 30% Pass Bolstar S21-Jn36775 CP mg/kg < 0.2	Organophosphorus Pesticides Result 1 Result 2 RPD										
Bolstar S21-Jn36775 CP mg/kg < 0.2 < 0.2 < 1 30% Pass Chlorfenvinphos S21-Jn36775 CP mg/kg < 0.2	Azinphos-methyl	S21-Jn36775	CP	mg/ka	< 0.2	< 0.2	<1	30%	Pass		
Chlorfenvinphos S21-Jn36775 CP mg/kg < 0.2 < 0.2 < 1 30% Pass Chlorpyrifos S21-Jn36775 CP mg/kg < 0.2	Bolstar	S21-Jn36775	CP	ma/ka	< 0.2	< 0.2	<1	30%	Pass		
Chlorpyrifos S21-Jn36775 CP mg/kg < 0.2 < 0.2 < 1 30% Pass Chlorpyrifos-methyl S21-Jn36775 CP mg/kg < 0.2	Chlorfenvinphos	S21-Jn36775	CP	ma/ka	< 0.2	< 0.2	<1	30%	Pass		
Chlorpyrifos-methyl S21-Jn36775 CP mg/kg < 0.2 < 0.2 < 1 30% Pass Coumaphos S21-Jn36775 CP mg/kg < 2	Chlorpyrifos	S21-Jn36775	CP	ma/ka	< 0.2	< 0.2	<1	30%	Pass		
Coumaphos S21-Jn36775 CP mg/kg < 2 < 2 <1 30% Pass	Chlorpyrifos-methvl	S21-Jn36775	CP	ma/ka	< 0.2	< 0.2	<1	30%	Pass		
	Coumaphos	S21-Jn36775	CP	mg/kg	< 2	< 2	<1	30%	Pass		

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Demeton-S	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S21-Jn36775	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-Jn36775	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S21-Jn36775	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Jn35098	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S21-Jn35098	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Jn35098	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S21-Jn35098	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S21-Jn35098	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S21-Jn35098	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S21-Jn35098	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total PCB*	S21-Jn35098	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Jn36482	NCP	%	6.8	8.2	19	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Jn36778	CP	mg/kg	9.6	9.4	2.0	30%	Pass	
Cadmium	S21-Jn36778	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Jn36778	CP	mg/kg	24	25	3.0	30%	Pass	
Copper	S21-Jn36778	CP	mg/kg	39	37	5.0	30%	Pass	
Lead	S21-Jn36778	CP	mg/kg	180	170	8.0	30%	Pass	
Mercury	S21-Jn36778	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Jn36778	CP	mg/kg	8.2	8.5	3.0	30%	Pass	
Zinc	S21-Jn36778	CP	mg/kg	61	69	11	30%	Pass	

Duplicate									
Heavy Metals			-	Result 1	Result 2	RPD			
Arsenic	S21-Jn36779	CP	mg/kg	2.6	4.1	44	30%	Fail	Q15
Cadmium	S21-Jn36779	CP	mg/kg	< 0.4	0.4	63	30%	Fail	Q15
Chromium	S21-Jn36779	CP	mg/kg	6.9	8.7	23	30%	Pass	
Copper	S21-Jn36779	CP	mg/kg	31	51	51	30%	Fail	Q15
Lead	S21-Jn36779	CP	mg/kg	15	22	37	30%	Fail	Q15
Mercury	S21-Jn36779	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Jn36779	CP	mg/kg	7.6	11	34	30%	Fail	Q15
Zinc	S21-Jn36779	CP	mg/kg	65	110	47	30%	Fail	Q15

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description Code

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Elvis Dsouza	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
John Nguyen	Senior Analyst-Metal (NSW)
Roopesh Rangarajan	Senior Analyst-Volatile (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

El Australia Suite 6.01, 55 Miller Street Pyrmont NSW 2009

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:

Clare Madigan

Report Project name Project ID Received Date 803985-W 2-6 PILGRIM AVE - STRATHFIELD NSW E23668 Jun 18, 2021

Client Sample ID			BH200-RS
Sample Matrix			Water
Eurofins Sample No.			S21-Jn36782
Date Sampled			Jun 17, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	94
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Jun 18, 2021	Holding Time 7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 18, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 18, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jun 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	Jun 21, 2021	180 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

	PILLOFI	20			Australia									New Zealand	
•		Envi	ronment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000	Sydne Unit F 16 Ma Lane	y 3, Buildir rs Road Cove We	ng F st NSW	2066 M - 1 B	risbane 21 Smallv urarrie QL hone : +6	vood Place D 4172 I 7 3902 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
ABN: 5	005 085 521 web: 1	www.eurofins.com.au	email: EnviroSal∈	ss@eurofins.com	NATA # 1261 Site # 1254 & 14271	Phone NATA	:: +61 2 # 1261 \$	9900 84 Site # 18	00 N	ATA # 126	31 Site # 20794	NATA # 1261 Site # 23736	Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290
o Pd C	mpany Name: dress:	EI Australia Suite 6.01, 5: Pyrmont NSW 2009	5 Miller Stree				Order Repol Phon		00	303985 32 9516	0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 P Jun 22, 2021 2 Day Clare Madigan	×
Prc	oject Name: oject ID:	2-6 PILGRIN E23668	1 AVE - STRA	THFIELD NSW	~								Eurofins Analytical S	ervices Manager : Elv	vis Dsouza
		Sa	mple Detail				Moisture Set	Eurofins Suite B7	Eurofins Suite B6	BTEX	El Australia Waste				
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	11											
Sydn	ey Laboratory	- NATA Site #1	8217			^ ×	×	×	×	×	×				
Brist	ane Laboraton	y - NATA Site #	20794												
Perth	Laboratory - N	JATA Site # 237	36				_								
Mayf	ield Laboratory	- NATA Site #	25079				_								
Exte	mal Laboratory					_	_								
°N N	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
-	BH201-0.3-0.5	Jun 17, 2021		Soil	S21-Jn36775		×				×				
2	BH202-0.3-0.5	Jun 17, 2021		Soil	S21-Jn36776		×				×				
e	BH204M-0.3- 0.5	Jun 17, 2021		Soil	S21-Jn36777		×				×				
4	BH203-0.4-0.5	Jun 17, 2021		Soil	S21-Jn36778		×				×				
5	BH201-3.8-4.0	Jun 17, 2021		Soil	S21-Jn36779		×	×							
9	BH204M-1.8- 2.0	Jun 17, 2021		Soil	S21-Jn36780		×	×							
~	BH200-QD	Jun 17, 2021		Soil	S21-Jn36781		×		×						
8	BH200-RS	Jun 17, 2021		Water	S21-Jn36782				×						

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Date Reported:Jun 22, 2021

Page 3 of 11

	FUND	50		Au	stralia									New Zealand		
		Envi	ironment Testi	Dar Mel	Ibourne Ionterey Road ndenong South VIC 3175 one : +61 3 8564 5000	Sydne Unit F3 16 Mar Lane O	, Building s Road ove Wes	g F t NSW 2	Bri 1/2 Mu 066 Ph	sbane 11 Smallv rarrie QL one : +6'	/ood Place .D 4172 I 7 3902 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450	
BN: 5I) 005 085 521 web:	www.eurofins.com.au	email: EnviroSales@eurofir	NA ⁷ ins.com Site	TA # 1261 s # 1254 & 14271	Phone	: +61 2 5 E 1261 S	900 840 ite # 182	0 NA	TA#126	31 Site # 20794	NATA # 1261 Site # 23736	Phone:+61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290	
Ad Ad	mpany Name: dress:	EI Australia Suite 6.01, 5 Pyrmont NSW 2009	5 Miller Street				Drder Repor Phone Fax:	 9 #	õ õ	03985 2 9516	0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 P Jun 22, 2021 2 Day Clare Madigan	W	
Prc	oject Name: oject ID:	2-6 PILGRIN E23668	1 AVE - STRATHFIEL	LD NSW									Eurofins Analytical S	ervices Manager : El	vis Dsouza	
		ũ	mple Detail		HOLD	BTEX	Moisture Set	Eurofins Suite B7	Eurofins Suite B6	BTEX	El Australia Waste					
Melb	ourne Laborato	ory - NATA Site	# 1254 & 14271			-										
Sydn	ey Laboratory	- NATA Site #1	8217		^	×	×	×	×	×	×					
Brist	ane Laborator	y - NATA Site #	20794													
Perth	Laboratory - I	NATA Site # 237	736													
Mayf	ield Laboratory	V - NATA Site #	25079													
Exte	rnal Laboratory	>														
6	TRIP SPIKE	Jun 17, 2021	Soil		S21-Jn36783					×						
10	TRIP SPIKE LAB	Jun 17, 2021	Soil		S21-Jn36784					×						
11	TRIP BLANK	Jun 17, 2021	Soil		S21-Jn36785	×										
12	BH202-1.8-2.0	Jun 17, 2021	Soil		S21-Jn36786											
13	BH201-1.8-2.0	Jun 17, 2021	Soil		S21-Jn36787											
14	BH201-2.8-3.0	Jun 17, 2021	Soil		S21-Jn36788 >											
15	BH201-4.1-4.3	Jun 17, 2021	Soil		S21-Jn36789 >											
16	BH202-0.8-1.0	Jun 17, 2021	Soil		S21-Jn36790 >											
17	BH204M-0.8- 1.0	Jun 17, 2021	Soil		S21-Jn36791]					

Page 4 of 11

rofi	NC		Australia								New Zealand	
	Envi	ironment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000	Sydn Unit F 16 Ma Lane	3, Buildi S, Buildi rs Road Sove We	ng F set NSW	2066 5	3risbane /21 Smallwood Place //urarrie QLD 4172 ⁹ hone : +61 7 3902 46	Perth 46-48 Banksia Road Welshpool WA 6106 500 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
5521 web	: www.eurofins.com.au	ı email: EnviroSales@eurofins.com	NATA # 1261 Site # 1254 & 14271	Phone NATA	: +61 2 # 1261 :	9900 84 Site # 18	217	JATA # 1261 Site # 2	0794 NATA # 1261 Site # 23736	Phone:+61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290
Name:	El Australia Suite 6.01, 5 Pyrmont NSW 2009	5 Miller Street			Order Repo Phon Fax:			803985 02 9516 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 F Jun 22, 2021 2 Day Clare Madigan	W
ame: D:	2-6 PILGRIN E23668	1 AVE - STRATHFIELD NSV	~							Eurofins Analytical S	services Manager : El	vis Dsouza
	ů	mple Detail	HOLD		Moisture Set	Eurofins Suite B7	Eurofins Suite B6	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals BTEX				
Laborat	ory - NATA Site	#1254 & 14271		+	┢							
oratory	- NATA Site #1	8217	^		×	×	×	××				
aborato	ry - NATA Site #	20794										
ratory -	NATA Site # 237	736										
aborator	y - NATA Site #	25079										
aborator	V											
2-2.6-3.0	Jun 17, 2021	Soil	S21-Jn36792 >									
2-3.8-4.0	Jun 17, 2021	Soil	S21-Jn36793 >	×								
2-4.5-4.7	, Jun 17, 2021	Soil	S21-Jn36794 >	×								
4M-2.8-	Jun 17, 2021	Soil	S21-Jn36795	×								
4M-3.8-	Jun 17, 2021	Soil	S21-Jn36796	×								
4M-5.3-	Jun 17, 2021	Soil	S21-Jn36797									
3-0.9-1.0	Jun 17, 2021	Soil	S21-Jn36798									
3-1.9-2.0	Jun 17, 2021	Soil	S21-Jn36799 >		_							
3-2.9-3.0	Jun 17, 2021	Soil	S21-Jn36800 >		_	_						

Page 5 of 11

AIROFIC		Australia								New Zealand	
	Environment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000	Sydne Unit F3 16 Mai Lane O	y s, Buildin s Road ove We	g F st NSW 20	Bris 1/21 Mur 1/21 Mur	bane Smallwood Pla arrie QLD 4172 ne : +61 7 3902	Perth ace 46-48 Banksia Road 2 0 Welshpool WA 6106 2 4500 Phone :+61 8 9251 9600 2 0 MYT № 4764	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 PD Box 60 A 7 Apres 0440	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450
ABN: 50 005 085 521 web: w	ww.eurofins.com.au email: EnviroSales@eurofins.com	Site # 1254 & 14271	NATA	# 1261 S	ite # 1821	2	# 1701 OILG # H	Site # 23736	NATA # 1261 Site # 25079	1701 # 70141	0671 # 70121
Company Name: Address:	El Australia Suite 6.01, 55 Miller Street Pyrmont NSW 2009			Order Repor Phone Fax:	.: ;; # .:	80 02	3985 9516 0722		Received: Due: Priority: Contact Name:	Jun 18, 2021 3:05 I Jun 22, 2021 2 Day Clare Madigan	ž
Project Name: Project ID:	2-6 PILGRIM AVE - STRATHFIELD NS' E23668	~							Eurofins Analytical S	services Manager : E	lvis Dsouza
	Sample Detail		BTEX	Moisture Set	Eurofins Suite B7	Eurofins Suite B6	El Australia Waste Class:TRH/BTEXN/PAH/OCP/OPP/Metals BTEX				
Melbourne Laborator	y - NATA Site # 1254 & 14271		-								
Sydney Laboratory -	NATA Site # 18217		×	×	×	×	×				
Brisbane Laboratory	- NATA Site # 20794										
Perth Laboratory - N/	ATA Site # 23736										
Mayfield Laboratory -	- NATA Site # 25079										
External Laboratory											
27 BH203-3.9-4.0	Jun 17, 2021 Soil	S21-Jn36801	×								
28 BH201-0.8-1.0	Jun 17, 2021 Soil	S21-Jn36869	×								
Test Counts		1	7 1	7	2	2	2 4				

Page 6 of 11

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: bH dublicates are reported as a rance NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Term

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " " in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Naphthalene	mg/L	< 0.01		0.01	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank						
BTEX						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total*	mg/L	< 0.003		0.003	Pass	
Method Blank		1				
Heavy Metals						
Arsenic	mg/L	< 0.001		0.001	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery		1	1 1	1	1	
Total Recoverable Hydrocarbons						
TRH C6-C9	%	89		70-130	Pass	
TRH C10-C14	%	102		70-130	Pass	
Naphthalene	%	91		70-130	Pass	
TRH C6-C10	%	89		70-130	Pass	
TRH >C10-C16	%	100		70-130	Pass	
LCS - % Recovery		1	r	T	1	
BTEX						
Benzene	%	92		70-130	Pass	
Toluene	%	94		70-130	Pass	
Ethylbenzene	%	93		70-130	Pass	
m&p-Xylenes	%	93		70-130	Pass	
o-Xylene	%	93		70-130	Pass	
Xylenes - Total*	%	93		70-130	Pass	
LCS - % Recovery		1	1 1	1	1	
Heavy Metals						
Arsenic	%	92		80-120	Pass	
Cadmium	%	93		80-120	Pass	
Chromium	%	96		80-120	Pass	
Copper	%	92		80-120	Pass	
Lead	%	90	ļ	80-120	Pass	
Mercury	%	101		80-120	Pass	

Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Nickel			%	94			80-120	Pass	
Zinc			%	93			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								-	
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S21-Jn40156	NCP	%	72			70-130	Pass	
TRH C10-C14	S21-Jn35227	NCP	%	101			70-130	Pass	
Naphthalene	S21-Jn40156	NCP	%	73			70-130	Pass	
TRH C6-C10	S21-Jn40156	NCP	%	72			70-130	Pass	
TRH >C10-C16	S21-Jn35227	NCP	%	101			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S21-Jn40156	NCP	%	72			70-130	Pass	
Toluene	S21-Jn40156	NCP	%	73			70-130	Pass	
Ethylbenzene	S21-Jn40156	NCP	%	75			70-130	Pass	
m&p-Xylenes	S21-Jn40156	NCP	%	76			70-130	Pass	
o-Xylene	S21-Jn40156	NCP	%	76			70-130	Pass	
Xylenes - Total*	S21-Jn40156	NCP	%	76			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S21-Jn27896	NCP	%	95			75-125	Pass	
Cadmium	S21-Jn27896	NCP	%	94			75-125	Pass	
Chromium	S21-Jn27896	NCP	%	91			75-125	Pass	
Copper	S21-Jn27896	NCP	%	75			75-125	Pass	
Lead	S21-Jn27896	NCP	%	85			75-125	Pass	
Mercury	S21-Jn27896	NCP	%	94			75-125	Pass	
Nickel	S21-Jn27896	NCP	%	86			75-125	Pass	
Zinc	S21-Jn27896	NCP	%	89			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	N21-Jn33285	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S21-Jn38598	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S21-Jn38598	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S21-Jn38598	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	N21-Jn33285	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	N21-Jn33285	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S21-Jn38598	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S21-Jn38598	NCP	ma/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S21-Jn38598	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate			0						
BTEX				Result 1	Result 2	RPD			
Benzene	N21-Jn33285	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	N21-Jn33285	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	N21-Jn33285	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	N21-Jn33285	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	N21-Jn33285	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	N21-Jn33285	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Duplicate									
Heavy Metals			Result 1	Result 2	RPD				
Arsenic	S21-Jn40159	NCP	mg/L	0.002	< 0.001	50	30%	Fail	Q15
Cadmium	S21-Jn40159	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-Jn40159	NCP	mg/L	0.017	0.016	5.0	30%	Pass	
Copper	S21-Jn40159	NCP	mg/L	0.002	0.001	32	30%	Fail	Q15
Lead	S21-Jn40159	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S21-Jn40159	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-Jn40159	NCP	mg/L	0.002	0.002	4.0	30%	Pass	
Zinc	S21-Jn40159	NCP	mg/L	0.019	0.020	6.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes.
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Elvis Dsouza
Andrew Sullivan
John Nguyen
Roopesh Rangarajan

Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW) Senior Analyst-Volatile (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

 * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

El Australia Suite 6.01, 55 Miller Street Pyrmont NSW 2009

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Ted Zhang

Report Project name Project ID Received Date

804362-W 2-6 PILGRIM AVE - STRATHFIELD NSW E23668 Jun 21, 2021

Client Sample ID			GB-H203M-1	GB-H204M-1	GW-QD1	GW-QR1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Jn39997	S21-Jn39998	S21-Jn39999	S21-Jn40000
Date Sampled		1	Jun 21, 2021	Jun 21, 2021	Jun 21, 2021	Jun 21, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	ma/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	ma/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	ma/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	103	105	101	98
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	-	-
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	-	-
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	-	-
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	-	-
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	-	-
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	-	-
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	-	-
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	-	-
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	-	-
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	-	-
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	-	-
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	-	-
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	-	-

Client Sample ID			GB-H203M-1	GB-H204M-1	GW-QD1	GW-QR1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Jn39997	S21-Jn39998	S21-Jn39999	S21-Jn40000
Date Sampled			Jun 21, 2021	Jun 21, 2021	Jun 21, 2021	Jun 21. 2021
Test/Reference	LOR	Unit				, .
Volatile Organics	Lon	Onic				
1 3-Dichloropropane	0.001	ma/l	< 0.001	< 0.001	_	_
1 3 5-Trimethylbenzene	0.001	ma/l	< 0.001	< 0.001	-	_
1.4-Dichlorobenzene	0.001	ma/L	< 0.001	< 0.001	-	-
2-Butanone (MEK)	0.001	ma/L	< 0.001	< 0.001	-	-
2-Propanone (Acetone)	0.001	mg/L	< 0.001	< 0.001	-	-
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	-	-
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	< 0.001	-	-
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	-	-
Benzene	0.001	mg/L	< 0.001	< 0.001	-	-
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	-	-
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	-	-
Bromodichloromethane	0.001	mg/L	< 0.001	0.001	-	-
Bromoform	0.001	mg/L	< 0.001	< 0.001	-	-
Bromomethane	0.001	mg/L	< 0.001	< 0.001	-	-
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	-	-
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	-	-
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	-	-
Chloroethane	0.001	mg/L	< 0.001	< 0.001	-	-
Chloroform	0.005	mg/L	< 0.005	0.010	-	-
Chloromethane	0.001	mg/L	< 0.001	< 0.001	-	-
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	-	-
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	-	-
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	-	-
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	-	-
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	-	-
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	-	-
Iodomethane	0.001	mg/L	< 0.001	< 0.001	-	-
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	-	-
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	-	-
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001	-	-
o-Xylene	0.001	mg/L	< 0.001	< 0.001	-	-
Styrene	0.001	mg/L	< 0.001	< 0.001	-	-
	0.001	mg/L	< 0.001	< 0.001	-	-
Toluene	0.001	mg/L	< 0.001	< 0.001	-	-
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	-	-
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	-	-
	0.001	mg/L	< 0.001	< 0.001	-	-
	0.001	mg/L	< 0.001	< 0.001	-	-
	0.001	mg/L	< 0.001	< 0.001	-	-
Aylenes - Total"	0.003	mg/L	< 0.003	< 0.003	-	-
	0.003	mg/L	< 0.003	< 0.003	-	-
	0.005	mg/L	< 0.005	0.01	-	-
4 Promofluorohonzono (curr.)	0.005	0/L	< 0.005 102	0.01	-	-
Toluono d9 (ourr.)	1	⁷ 0	103	100	-	-
		70	103	101		-

Client Sample ID			GB-H203M-1	GB-H204M-1	GW-QD1	GW-QR1
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Jn39997	S21-Jn39998	S21-Jn39999	S21-Jn40000
Date Sampled			Jun 21, 2021	Jun 21, 2021	Jun 21, 2021	Jun 21, 2021
Test/Paference	LOP	Llnit				
Polycyclic Aromatic Hydrocarbons	LUK	Unit				
	0.001	ma/l	< 0.001	< 0.001		
	0.001	mg/L	< 0.001	< 0.001		-
Anthracene	0.001	mg/L	< 0.001	< 0.001		
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	_	_
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
Benzo(b&i)fluoranthene ^{N07}	0.001	ma/L	< 0.001	< 0.001	-	-
Benzo(a,h,i)pervlene	0.001	ma/L	< 0.001	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	-	-
Fluorene	0.001	mg/L	< 0.001	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	58	86	-	-
p-Terphenyl-d14 (surr.)	1	%	54	84	-	-
Phenols (Halogenated)						
2-Chlorophenol	0.003	mg/L	< 0.03	< 0.003	-	-
2.4-Dichlorophenol	0.003	mg/L	< 0.03	< 0.003	-	-
2.4.5-Trichlorophenol	0.01	mg/L	< 0.1	< 0.01	-	-
2.4.6-Trichlorophenol	0.01	mg/L	< 0.1	< 0.01	-	-
2.6-Dichlorophenol	0.003	mg/L	< 0.03	< 0.003	-	-
4-Chloro-3-methylphenol	0.01	mg/L	< 0.1	< 0.01	-	-
Pentachlorophenol	0.01	mg/L	< 0.1	< 0.01	-	-
I etrachlorophenols - I otal	0.03	mg/L	< 0.3	< 0.03	-	-
I otal Halogenated Phenol*	0.01	mg/L	< 0.1	< 0.01	-	-
Phenois (non-Halogenated)	0.4			. 0.4		
2-Cyclonexyl-4.6-dinitrophenol	0.1	mg/L	< 1	< 0.1	-	-
2-Metnyl-4.6-dinitrophenol	0.03	mg/L	< 0.3	< 0.03	-	-
2.4 Dimethylphenol	0.01	mg/L	< 0.03	< 0.01	-	-
2.4-Diniteutyphenol	0.003	mg/L	< 0.03	< 0.003	-	-
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.03	< 0.003		
3&4-Methylphenol (m&n-Cresol)	0.005	mg/L	< 0.06	< 0.005		
Total cresols*	0.000	mg/L	< 0.06	< 0.000		
4-Nitrophenol	0.03	mg/L	< 0.3	< 0.03	_	_
Dinoseb	0.1	mg/L	< 1	< 0.1	-	-
Phenol	0.003	ma/L	< 0.03	< 0.003	-	-
Phenol-d6 (surr.)	1	%	INT	21	-	-
Total Non-Halogenated Phenol*	0.1	mg/L	< 1	< 0.1	-	-
Heavy Metals	·					
Arsenic	0.001	mg/L	-	-	0.003	< 0.001
Cadmium	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Chromium	0.001	mg/L			0.002	< 0.001
Copper	0.001	mg/L	-	-	0.004	< 0.001
Lead	0.001	mg/L	-	-	< 0.001	< 0.001

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			GB-H203M-1 Water S21-Jn39997 Jun 21, 2021	GB-H204M-1 Water S21-Jn39998 Jun 21, 2021	GW-QD1 Water S21-Jn39999 Jun 21, 2021	GW-QR1 Water S21-Jn40000 Jun 21, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Mercury	0.0001	mg/L	-	-	< 0.0001	< 0.0001
Nickel	0.001	mg/L	-	-	0.012	< 0.001
Zinc	0.005	mg/L	-	-	0.034	< 0.005

Client Sample ID Sample Matrix			GW-QRB1 Water	GW-TB1 Water	GW-TS1 Water
Eurofine Sample No			S21- In40001	S21- In40002	S21- In40003
Date Sampled			lup 21 2021	lup 21 2021	lup 21 2021
Test/Poference		Linit	541121, 2021	501121, 2021	501121, 2021
Total Recoverable Hydrocarbons	LUK	Unit			
	0.02	ma/l	< 0.02		
TRH C10 C14	0.02	mg/L	< 0.02	-	-
TRH C15-C28	0.05	mg/L	< 0.03		
TRH C29-C36	0.1	mg/L	< 0.1		
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	_	_
Naphthalene ^{N02}	0.01	ma/l	< 0.01	-	_
TRH C6-C10	0.02	ma/L	< 0.02	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	-	-
TRH >C10-C16	0.05	ma/L	< 0.05	_	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	ma/L	< 0.05	-	-
TRH >C16-C34	0.1	ma/L	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-	-
BTEX					
Benzene	0.001	mg/L	< 0.001	< 0.001	-
Toluene	0.001	mg/L	< 0.001	< 0.001	-
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	-
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	-
o-Xylene	0.001	mg/L	< 0.001	< 0.001	-
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	-
4-Bromofluorobenzene (surr.)	1	%	96	101	-
Heavy Metals					
Arsenic	0.001	mg/L	< 0.001	-	-
Cadmium	0.0002	mg/L	< 0.0002	-	-
Chromium	0.001	mg/L	< 0.001	-	-
Copper	0.001	mg/L	< 0.001	-	-
Lead	0.001	mg/L	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	-	-
Nickel	0.001	mg/L	< 0.001	-	-
Zinc	0.005	mg/L	< 0.005	-	-
BTEX	1				
Benzene	1	%	-	-	100
Ethylbenzene	1	%	-	-	100
m&p-Xylenes	1	%	-	-	110
o-Xylene	1	%	-	-	98
Toluene	1	%	-	-	100
Xylenes - Total	1	%	-	-	100
4-Bromofluorobenzene (surr.)	1	%	-	-	99

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 21, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 21, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 21, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jun 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 21, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (Halogenated)	Sydney	Jun 21, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Sydney	Jun 21, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Volatile Organics	Sydney	Jun 21, 2021	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Metals M8	Sydney	Jun 22, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

J.C	-			Australia								New Zealand	
0	Env	vironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 317 Phone : +61 3 8564 5000	Sydr Unit I 16 M Lane	ey -3, Build ars Road Cove W	ng F est NSW	2066	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +617 3902 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Driv Rolleston, Ch Phone : 0800
21 we	sb: www.eurofins.com.a	au email: EnviroSale	ss@eurofins.com	NATA # 1261 Site # 1254 & 14271	Phor NAT/	e:+612 \#1261	: 9900 8⁄ Site # 18	100 3217	NATA # 1261 Site # 20794	NATA # 1261 Site # 23736	Phone:+61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290
lame	: El Australia Suite 6.01, Pyrmont NSW 2009	55 Miller Stree	ţ			Orde Repo Phon Fax:	.:		804362 02 9516 0722		Received: Due: Priority: Contact Name:	Jun 21, 2021 2:54 F Jun 22, 2021 1 Day Ted Zhang	M
:eu	2-6 PILGRI E23668	M AVE - STRA	THFIELD NSW	-							Eurofins Analytical So	ervices Manager : El	vis Dsouza
	ö	ample Detail			Metals M8		Eurofins Suite B1	Eurofins Suite B4A	BTEX				
abora	atory - NATA Site	e # 1254 & 142	271										
orator	'y - NATA Site #	18217			×	^ ×	×	×	×				
borate	ory - NATA Site #	# 20794											
atory	- NATA Site # 23	3736											
orato	ory - NATA Site #	# 25079											
orato	iry												
ple ID	Sample Date	Sampling Time	Matrix	LAB ID									
03M-1	Jun 21, 2021		Water	S21-Jn39997				×					
04M-1	Jun 21, 2021		Water	S21-Jn39998		^		×					
5	Jun 21, 2021		Water	S21-Jn39999	×		×						
5	Jun 21, 2021		Water	S21-Jn40000	×		×						
B1	Jun 21, 2021		Water	S21-Jn40001	×		×						
-	Jun 21, 2021		Water	S21-Jn40002		×							
1	Jun 21, 2021		Water	S21-Jn40003					×				
					3	-	3	2	~				

Eurofins Environment Testing Unit F3. Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Page 6 of 15

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: bH dublicates are reported as a rance NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Term

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " " in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			I			
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Naphthalene	mg/L	< 0.01		0.01	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	ma/L	< 0.05		0.05	Pass	
TRH >C16-C34	ma/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank			I			
BTEX						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xvlenes	ma/L	< 0.002		0.002	Pass	
o-Xvlene	ma/L	< 0.001		0.001	Pass	
Xvlenes - Total*	ma/L	< 0.003		0.003	Pass	
Method Blank						
Volatile Organics						
1.1-Dichloroethane	ma/L	< 0.001		0.001	Pass	
1.1-Dichloroethene	ma/L	< 0.001		0.001	Pass	
1.1.1-Trichloroethane	ma/L	< 0.001		0.001	Pass	
1.1.1.2-Tetrachloroethane	ma/L	< 0.001		0.001	Pass	
1.1.2-Trichloroethane	ma/L	< 0.001		0.001	Pass	
1.1.2.2-Tetrachloroethane	ma/L	< 0.001		0.001	Pass	
1.2-Dibromoethane	ma/L	< 0.001		0.001	Pass	
1.2-Dichlorobenzene	ma/L	< 0.001		0.001	Pass	
1.2-Dichloroethane	ma/L	< 0.001		0.001	Pass	
1.2-Dichloropropane	ma/L	< 0.001		0.001	Pass	
1.2.3-Trichloropropane	ma/L	< 0.001		0.001	Pass	
1.2.4-Trimethylbenzene	ma/L	< 0.001		0.001	Pass	
1.3-Dichlorobenzene	ma/L	< 0.001		0.001	Pass	
1.3-Dichloropropane	ma/L	< 0.001		0.001	Pass	
1.3.5-Trimethylbenzene	ma/L	< 0.001		0.001	Pass	
1.4-Dichlorobenzene	ma/L	< 0.001		0.001	Pass	
2-Butanone (MEK)	ma/L	< 0.001		0.001	Pass	
2-Propanone (Acetone)	ma/L	< 0.001		0.001	Pass	
4-Chlorotoluene	ma/L	< 0.001		0.001	Pass	
4-Methyl-2-pentanone (MIBK)	ma/L	< 0.001		0.001	Pass	
Allyl chloride	ma/L	< 0.001		0.001	Pass	
Benzene	ma/L	< 0.001		0.001	Pass	
Bromobenzene	ma/L	< 0.001		0.001	Pass	
Bromochloromethane	ma/L	< 0.001		0.001	Pass	
Bromodichloromethane	ma/L	< 0.001		0.001	Pass	
Bromoform	ma/L	< 0.001		0.001	Pass	
Bromomethane	ma/L	< 0.001		0.001	Pass	
Carbon disulfide		< 0.001		0.001	Pass	
Carbon Tetrachloride	ma/l	< 0.001		0.001	Pass	
Chlorobenzene	ma/l	< 0.001		0.001	Pass	
Chloroethane	mg/L	< 0.001		0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
Iodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	 0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank			1	1	
Phenois (Halogenated)	"	. 0.000	0.000	-	
	mg/L	< 0.003	0.003	Pass	
	mg/L	< 0.003	0.003	Pass	
	mg/L	< 0.01	0.01	Pass	
	mg/L	< 0.01	0.01	Pass	
	mg/L	< 0.003	0.003	Pass	
4-Chloro-3-methyphenol	mg/L	< 0.01	0.01	Pass	
	mg/L	< 0.01	0.01	Pass	
Nethod Plank	ing/L	< 0.03	0.03	rass	
Phonole (non-Halogonated)					
	ma/l	< 0.1	0.1	Pass	
2-Methyl-4.6-dinitrophenol	mg/L	< 0.02	0.1	Pass	
	ing/∟	× 0.05	0.03	1 922	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
2-Nitrophenol	ma/L	< 0.01		0.01	Pass	
2.4-Dimethylphenol	ma/L	< 0.003		0.003	Pass	
2.4-Dinitrophenol	ma/L	< 0.03		0.03	Pass	
2-Methylphenol (o-Cresol)	ma/L	< 0.003		0.003	Pass	
3&4-Methylphenol (m&p-Cresol)	ma/L	< 0.006		0.006	Pass	
4-Nitrophenol	ma/L	< 0.03		0.03	Pass	
Dinoseb	ma/L	< 0.1		0.1	Pass	
Phenol	ma/L	< 0.003		0.003	Pass	
Method Blank				1		
Heavy Metals						
Arsenic	mg/L	< 0.001		0.001	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery			•	•		
Total Recoverable Hydrocarbons						
TRH C6-C9	%	87		70-130	Pass	
TRH C10-C14	%	71		70-130	Pass	
Naphthalene	%	78		70-130	Pass	
TRH C6-C10	%	79		70-130	Pass	
TRH >C10-C16	%	72		70-130	Pass	
LCS - % Recovery				·		
BTEX						
Benzene	%	90		70-130	Pass	
Toluene	%	93		70-130	Pass	
Ethylbenzene	%	94		70-130	Pass	
m&p-Xylenes	%	95		70-130	Pass	
o-Xylene	%	94		70-130	Pass	
Xylenes - Total*	%	95		70-130	Pass	
LCS - % Recovery						
Volatile Organics						
1.1-Dichloroethene	%	125		70-130	Pass	
1.1.1-Trichloroethane	%	110		70-130	Pass	
1.2-Dichlorobenzene	%	90		70-130	Pass	
1.2-Dichloroethane	%	112		70-130	Pass	
Benzene	%	83		70-130	Pass	
Ethylbenzene	%	86		70-130	Pass	
m&p-Xylenes	%	87		70-130	Pass	
o-Xylene	%	87		70-130	Pass	
Toluene	%	85		70-130	Pass	
Trichloroethene	%	97		70-130	Pass	
Xylenes - Total*	%	87		70-130	Pass	
LCS - % Recovery		1		1	r	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	86		70-130	Pass	
Acenaphthylene	%	75		70-130	Pass	ļ
Anthracene	%	90		70-130	Pass	
Benz(a)anthracene	%	72		70-130	Pass	
Benzo(a)pyrene	%	76		70-130	Pass	ļ
Benzo(b&j)fluoranthene	%	70		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene			%	79		70-130	Pass	
Benzo(k)fluoranthene			%	76		70-130	Pass	
Chrysene			%	72		70-130	Pass	
Dibenz(a.h)anthracene			%	72		70-130	Pass	
Fluoranthene			%	79		70-130	Pass	
Fluorene			%	98		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	75		70-130	Pass	
Naphthalene			%	100		70-130	Pass	
Phenanthrene			%	72		70-130	Pass	
Pyrene			%	79		70-130	Pass	
LCS - % Recovery				1	<u> </u>		-	
Phenols (Halogenated)								
2-Chlorophenol			%	75		30-130	Pass	
2.4-Dichlorophenol			%	97		30-130	Pass	
2.4.5-Trichlorophenol			%	91		30-130	Pass	
2.4.6-Trichlorophenol			%	114		30-130	Pass	
2.6-Dichlorophenol			%	109		30-130	Pass	
4-Chloro-3-methylphenol			%	74		30-130	Pass	
Pentachlorophenol			%	112		30-130	Pass	
Tetrachlorophenols - Total			%	109		30-130	Pass	
LCS - % Recovery				1	r			
Phenols (non-Halogenated)								
2-Methyl-4.6-dinitrophenol			%	113		30-130	Pass	
2-Nitrophenol			%	115		30-130	Pass	
2.4-Dimethylphenol			%	90		30-130	Pass	
2.4-Dinitrophenol			%	41		30-130	Pass	
2-Methylphenol (o-Cresol)			%	57		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	52		30-130	Pass	
4-Nitrophenol			%	34		30-130	Pass	
Dinoseb			%	124		30-130	Pass	
LCS - % Recovery				1	Г	-		
Heavy Metals							_	
Arsenic			%	97		80-120	Pass	
Cadmium			%	96		80-120	Pass	
Chromium			%	95		80-120	Pass	
Copper			%	91		80-120	Pass	
Lead			%	90		80-120	Pass	
Mercury			%	97		80-120	Pass	
			%	93		80-120	Pass	
Zinc		0 4	%	92		80-120	Pass	Our all faile a
Test	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery					· · · · ·			
Total Recoverable Hydrocarbons				Result 1				
TRH C10-C14	S21-Jn38582	NCP	%	90		70-130	Pass	
TRH >C10-C16	S21-Jn38582	NCP	%	89		70-130	Pass	
Spike - % Recovery								
Volatile Organics				Result 1				
1.1-Dichloroethene	S21-Jn35228	NCP	%	116		70-130	Pass	
1.1.1-Trichloroethane	S21-Jn35228	NCP	%	101		70-130	Pass	
1.2-Dichlorobenzene	S21-Jn35228	NCP	%	88		70-130	Pass	
1.2-Dichloroethane	S21-Jn35228	NCP	%	97		70-130	Pass	
Trichloroethene	S21-Jn35228	NCP	%	91		70-130	Pass	
Spike - % Recovery				1				
Heavy Metals				Result 1				

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Arsenic	S21-Jn39596	NCP	%	99			75-125	Pass	
Cadmium	S21-Jn39596	NCP	%	98			75-125	Pass	
Chromium	S21-Jn39596	NCP	%	95			75-125	Pass	
Copper	S21-Jn39596	NCP	%	91			75-125	Pass	
Lead	S21-Jn39596	NCP	%	93			75-125	Pass	
Mercury	S21-Jn39596	NCP	%	102			75-125	Pass	
Nickel	S21-Jn39596	NCP	%	92			75-125	Pass	
Zinc	S21-Jn39596	NCP	%	88			75-125	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S21-Jn40000	CP	%	89			70-130	Pass	
Naphthalene	S21-Jn40000	CP	%	93			70-130	Pass	
TRH C6-C10	S21-Jn40000	CP	%	90			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S21-Jn40000	CP	%	95			70-130	Pass	
Toluene	S21-Jn40000	CP	%	98			70-130	Pass	
Ethylbenzene	S21-Jn40000	CP	%	98			70-130	Pass	
m&p-Xylenes	S21-Jn40000	CP	%	99			70-130	Pass	
o-Xylene	S21-Jn40000	CP	%	100			70-130	Pass	
Xylenes - Total*	S21-Jn40000	CP	%	99			70-130	Pass	
Toot	Lab Sample ID	QA	Unite	Pocult 1			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result I			Limits	Limits	Code
Duplicate				1	-		1		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S21-Jn38598	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S21-Jn38598	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S21-Jn38598	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C10-C16	S21-Jn38598	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S21-Jn38598	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S21-Jn38598	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				1	1		1		
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dibromoethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichlorobenzene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.3-Trichloropropane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.4-Trimethylbenzene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichlorobenzene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3.5-Trimethylbenzene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.4-Dichlorobenzene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Propanone (Acetone)	S21-Jn39892	NCP	mg/L	0.041	0.045	10	30%	Pass	
4-Chlorotoluene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Allyl chloride	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromobenzene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate									
Volatile Organics			_	Result 1	Result 2	RPD			
Bromochloromethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromoform	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	1
Bromomethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon disulfide	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroform	S21-Jn39892	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	1
Chloromethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	1
cis-1.2-Dichloroethene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	L
cis-1.3-Dichloropropene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	L
Dibromochloromethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	L
Dibromomethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	L
Dichlorodifluoromethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	L
Iodomethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	L
Isopropyl benzene (Cumene)	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Methylene Chloride	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Styrene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tetrachloroethene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	1
Trichloroethene	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	1
Trichlorofluoromethane	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	L
Vinyl chloride	S21-Jn39892	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	L
Duplicate				-					L
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S21-Jn27373	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				1	1				
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-Jn39999	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Naphthalene	S21-Jn39999	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S21-Jn39999	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate				1					
BTEX	[1	Result 1	Result 2	RPD			
Benzene	S21-Jn39999	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S21-Jn39999	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S21-Jn39999	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S21-Jn39999	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
o-Xylene	S21-Jn39999	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S21-Jn39999	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Jn39596	NCP	mg/L	0.005	0.005	2.0	30%	Pass	
Cadmium	S21-Jn39596	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-Jn39596	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S21-Jn39596	NCP	mg/L	0.007	0.006	6.0	30%	Pass	
Lead	S21-Jn39596	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S21-Jn39596	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-Jn39596	NCP	mg/L	0.010	0.010	7.0	30%	Pass	
Zinc	S21-Jn39596	NCP	mg/L	0.024	0.029	18	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles N01 (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

- F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
- Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Elvis Dsouza	
Andrew Sullivan	
John Nguyen	
Roopesh Rangarajan	

Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW) Senior Analyst-Volatile (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

El Australia Suite 6.01, 55 Miller Street Pyrmont NSW 2009

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency lesting scheme providers and reference materials producers reports and certificates.

Attention:

Ted Zhang

Report	805633-W
Project name	2-6 PILGRIM AVE - STRATHFIELD NSW
Project ID	E23668
Received Date	Jun 24, 2021

Client Sample ID			GB-H203M-1	GB-H204M-1	GW-QD1
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S21-Jn49705	S21-Jn49706	S21-Jn49766
Date Sampled			Jun 21, 2021	Jun 21, 2021	Jun 21, 2021
Test/Reference	LOR	Unit			
Heavy Metals					
Arsenic	0.001	mg/L	0.002	-	-
Arsenic (filtered)	0.001	mg/L	0.002	0.002	0.002
Cadmium	0.0002	mg/L	< 0.0002	-	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.002	-	-
Chromium (filtered)	0.001	mg/L	0.002	0.002	< 0.001
Copper	0.001	mg/L	< 0.001	-	-
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002
Lead	0.001	mg/L	< 0.001	-	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Mercury	0.0001	mg/L	< 0.0001	-	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.002	-	-
Nickel (filtered)	0.001	mg/L	0.002	0.002	0.009
Zinc	0.005	mg/L	0.037	-	-
Zinc (filtered)	0.005	mg/L	0.036	0.036	0.028

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8	Sydney	Jun 24, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals M8 filtered	Sydney	Jun 24, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

	PILLOF	SU		A	ustralia						New Zealand	
ABN: 5(0 005 085 521 web:	Env www.eurofins.com.au	ironment '	M Fecting 6 Periodins.com Si	elbourne Monterey Road andenong South VIC 3175 hone : +61 3 8564 5000 ATA # 1261 te # 1254	Sydr Unit I 16 M Lane Phon NAT/	eey =3, Building F ars Road Cove West NSW 2066 e : +61 2 9900 8400 À # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +617 3902 4600 MATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Dex 60 Wickham 2293 Phone : +61 2 4968 9448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64.9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleson, Christchurch 7675 Phone : 0800 856 450 JANZ # 1290
A do A C	mpany Name: dress:	El Australia Suite 6.01, ĉ Pyrmont NSW 2009	55 Miller Street				Order No.: Report #: Phone: Fax:	805633 02 9516 0722		Received: Due: Priority: Contact Name:	Jun 24, 2021 6:04 F Jun 25, 2021 Overnight Ted Zhand	W
Prc	oject Name: oject ID:	2-6 PILGRIN E23668	AVE - STRA	THFIELD NSW						Eurofins Analytical Se	ervices Manager : El	vis Dsouza
		ů	ample Detail			Motale MR	Metals M8 filtered					
Melb	ourne Laborat	orv - NATA Site	* # 1254									
Sydr	ney Laboratory	- NATA Site # 1	18217			×	×					
Brist	bane Laborator	ry - NATA Site #	¢ 20794									
Perth	h Laboratory -	NATA Site # 23	736			_						
Mayf	Field Laborator	y - NATA Site #	25079									
Exte	rnal Laborator	٨										
°N N	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
-	GB-H203M-1	Jun 21, 2021		Water	S21-Jn49705	×	×					

S21-Jn49706 S21-Jn49766

Water Water

 2
 GB-H204M-1
 Jun 21, 2021

 3
 GW-QD1
 Jun 21, 2021

 Test Counts

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks. Duplicates. Matrix Spikes. and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PEASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code	
Method Blank								
Heavy Metals								
Arsenic			mg/L	< 0.001		0.001	Pass	
Arsenic (filtered)			mg/L	< 0.001		0.001	Pass	
Cadmium			mg/L	< 0.0002		0.0002	Pass	
Cadmium (filtered)			mg/L	< 0.0002		0.0002	Pass	
Chromium			mg/L	< 0.001		0.001	Pass	
Chromium (filtered)			mg/L	< 0.001		0.001	Pass	
Copper			mg/L	< 0.001		0.001	Pass	
Copper (filtered)			mg/L	< 0.001		0.001	Pass	
Lead			mg/L	< 0.001		0.001	Pass	
Lead (filtered)			mg/L	< 0.001		0.001	Pass	
Mercury			mg/L	< 0.0001		0.0001	Pass	
Mercury (filtered)			mg/L	< 0.0001		0.0001	Pass	
Nickel			mg/L	< 0.001		0.001	Pass	
Nickel (filtered)			mg/L	< 0.001		0.001	Pass	
Zinc			mg/L	< 0.005		0.005	Pass	
Zinc (filtered)			mg/L	< 0.005		0.005	Pass	
LCS - % Recovery						•		
Heavy Metals								
Arsenic			%	90		80-120	Pass	
Arsenic (filtered)			%	93		80-120	Pass	
Cadmium			%	94		80-120	Pass	
Cadmium (filtered)			%	98		80-120	Pass	
Chromium			%	88		80-120	Pass	
Chromium (filtered)			%	96		80-120	Pass	
Copper			%	84		80-120	Pass	
Copper (filtered)			%	96		80-120	Pass	
Lead			%	85		80-120	Pass	
Lead (filtered)			%	95		80-120	Pass	
Mercury			%	93		80-120	Pass	
Mercury (filtered)			%	102		80-120	Pass	
Nickel			%	87		80-120	Pass	
Nickel (filtered)			%	97		80-120	Pass	
Zinc			%	88		80-120	Pass	
Zinc (filtered)			%	94		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							r	
Heavy Metals				Result 1				
Arsenic	S21-Jn48339	NCP	%	115		75-125	Pass	
Arsenic (filtered)	S21-Jn48339	NCP	%	112		75-125	Pass	
Cadmium	S21-Jn48339	NCP	%	98		75-125	Pass	
Cadmium (filtered)	S21-Jn48339	NCP	%	98		75-125	Pass	
Chromium	S21-Jn48339	NCP	%	80		75-125	Pass	
Chromium (filtered)	S21-Jn48339	NCP	%	80		75-125	Pass	
Copper	S21-Jn33239	NCP	%	111		75-125	Pass	
Lead	S21-Jn33239	NCP	%	112		75-125	Pass	
Mercury	S21-Jn33239	NCP	%	107		75-125	Pass	
Mercury (filtered)	S21-Jn48339	NCP	%	82		75-125	Pass	
Nickel	S21-Jn33239	NCP	%	109		75-125	Pass	
Zinc	S21-Jn33239	NCP	%	93		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals		,		Result 1	Result 2	RPD			
Arsenic (filtered)	S21-Jn47337	NCP	mg/L	0.032	0.032	2.0	30%	Pass	
Cadmium (filtered)	S21-Jn47337	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S21-Jn47337	NCP	mg/L	0.008	0.008	4.0	30%	Pass	
Copper (filtered)	S21-Jn47337	NCP	mg/L	0.006	0.006	1.0	30%	Pass	
Lead (filtered)	S21-Jn47337	NCP	mg/L	0.002	0.002	1.0	30%	Pass	
Mercury (filtered)	S21-Jn47337	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S21-Jn47337	NCP	mg/L	0.004	0.004	2.0	30%	Pass	
Zinc (filtered)	S21-Jn47337	NCP	mg/L	0.020	0.020	1.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Jn49706	CP	mg/L	0.002	0.002	6.0	30%	Pass	
Cadmium	S21-Jn49706	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-Jn49706	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S21-Jn49706	CP	mg/L	0.002	0.002	4.0	30%	Pass	
Lead	S21-Jn49706	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S21-Jn49706	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-Jn49706	CP	mg/L	0.010	0.012	19	30%	Pass	
Zinc	S21-Jn49706	CP	mg/L	0.037	0.047	26	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Elvis Dsouza John Nguyen Analytical Services Manager Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix I – QA/QC Assessment
I1.1 Quality Assurance / Quality Control Program

Quality assurance comprises an assessment of the reliability of the field procedures and laboratory results against standard industry practices and the SAQP. A summary of the project QA/QC measures incorporated into this ASI is presented in **Table I-1**.

Task	Description	Project
Field QA/QC		
General	Work was to be undertaken following standard field procedures which are based on industry accepted standard practice.	Soil samples were collected directly from the augers. Soil samples were placed in 250 gram glass jars, which were filled to minimise headspace, and sealed using Teflon-coated lids. Groundwater samples were obtained using sample bottles/jars/vials provided by the laboratory.
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes
Soil Screening with PID	The PID was serviced and calibrated as per manufacturer requirements. PID calibrated at the beginning of each day of fieldwork.	Yes See Appendix F for calibration documentation.
Equipment Decontamination	Sampling equipment to be decontaminated after the collection of each soil sample by washing with phosphate-free detergent (such as Decon 90 or Alconox) and potable water, followed by a final distilled water rinse. One rinsate blank would be collected and analysed for the primary contaminants. All results should be non-detect.	Yes Two rinsate samples were collected in total. All results were non-detect.
Transport	Samples were stored in a chilled (with ice) cooler box and transported to the laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation and transport duration.	Yes
Trip Blanks	Trip Blank (TB) samples were to be prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.	Two trip blank samples prepared by the primary laboratories, were analysed for BTEX during soil and groundwater testing. The results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

Table I-1 Project QC Measures

Task	Description	Project
Trip Spikes	Trip spike (TS) samples were to be submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.	Two trip spike samples were submitted to the primary laboratories for BTEX analysis, the results of which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.
Duplicates	 Field duplicate samples were analysed as follows: intra-laboratory duplicate samples at a rate of 1 in 20 primary samples (as per NEPM); and inter-laboratory duplicate samples at a rate of 1 in 20 primary samples (as per NEPM). Field and laboratory acceptable limits between 30-50% RPD as stated by AS4482.1–2005. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or Heterogeneous materials or volatile compounds are encountered. Non-compliance is to be documented in the report and the sample re-analysed or a higher level conservatively adopted. 	Partly satisfied - primary sample BH201_4.1-4.3 was not tested. A comparison has been made between the duplicate and triplicate. Generally, samples complied with RPD calculations. Soil results can exhibit wide variations in results due to sample heterogeneity, which can in turn exaggerate RPDs. Additionally, some RPD exceedance calculations can be attributed to low limits of reporting. Field QC samples and calculated RPD values are presented in Table I-5 . Copies of laboratory reports are included in Appendix H .
Laboratory QA/QC	2	
Laboratory Analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC programs.	Yes Eurofins - primary laboratory Envirolab - secondary laboratory
	Appropriate detection limits were used for the analyses to be undertaken.	Practical Quantitation Limits for all tested parameters during the ASI are presented in summary tables.
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be completed within standard guidelines.	Assessment of holding times has been undertaken by the laboratory.

Task	Description	Project
Method Blanks	The method blank sample is laboratory prepared, containing the reagents used to prepare the sample for final analysis. The purpose of this procedure is to identify contamination in the reagent materials and assess potential bias in the sample analysis due to contaminated reagents. The QC criterion aims to find no detectable contamination in the reagents. Each analysis procedure should be subject to a method blank analysis. The results of each should indicate that contaminants were not detected.	Assessment of method blanks has been undertaken by the laboratory.
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These sub-samples are selected by the laboratory to assess the accuracy and precision of the analytical method. The selected laboratories should undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intra- laboratory duplicates should be performed at a frequency of 1 per 10 samples.	Assessment of laboratory duplicates has been undertaken by the laboratory.
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical run.	Assessment of laboratory control standards has been undertaken by the laboratory.
Matrix Spikes / Matrix Spike Duplicates	Matric spikes are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	Assessment of matrix spikes has been undertaken by the laboratory.

Task	Description	Project
Surrogate Spikes	Surrogate spikes provide a means of checking, for every analysis that no gross errors have occurred at any stage of the procedure leading to significant analyte loss. Recoveries should be within the stated laboratory control limits of 70 to 130%.	Assessment of surrogate spikes has been undertaken by the laboratory.
Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	Assessment of the investigation QA/QC is presented in the following sections.

I1.2 Calculation of Relative Percentage Difference

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

 C_{O} = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

I2.1 Field QA/QC

The field (intra- / inter- laboratory) duplicate samples collected during the works are summarised in **Table I-2**. Inter-lab duplicates were analysed by the secondary laboratory, Envirolab.

Table I-2 Field	QC	Sampling	Program
-----------------	----	----------	---------

Matrix	Primary QA Sample	Duplicate (Primary Lab)	Triplicate (Secondary Lab)	Total Duplicates		
Soil	BH201_4.1-4.3	BH200-QD	BH200-QT	2		
Groundwater	GB-H204M-1	GW-QD1	GW-QT1	2		

I2.2 Field Data Quality Indicators

A discussion of the field data quality indicators is presented in Table I-3 below.

Table I-3	Field	Data	Quality	Indicators
-----------	-------	------	---------	------------

DQI	Item	Conformance
Precision Measure of the variability (or reproducibility) of data.	SOPs appropriate and complied with	Yes
Accuracy	SOPs appropriate and complied with	Yes
Quantitative measure of the closeness of reported data to the true values.	Calibration of instruments against known standards	Yes
Representativeness	Appropriate media sampled according to SAQP	Yes
representative of each media present on the site.	Each media identified in SAQP sampled	Yes
Completeness	Each critical location sampled	Yes
Percentage of useable data from sampling episode (set).	SAQP appropriate and complied with	Yes
	Appropriate number of field duplicate samples taken	Part
	Experienced sampler	Yes
	Field documentation correct	Yes
Comparability Confidence [expressed	Same sampling method used on each occasion/location	Yes
considered to be equivalent for	Experienced sampler	Yes
each sampling and analytical event.	Same type of samples collected (filtered, size, fractions)	Yes

I2.3 Conclusion for the Field QA/QC

All field work, including equipment decontamination and sample preservation and transport, was conducted in accordance with the SAQP and SOPs, which were devised with reference to industry-approved guidelines. Appropriate QC measures were integrated into each sampling event and the DQI were met, or if not, the variability was suitably justified.

All samples, including field QC samples, were transported to the primary and secondary laboratories under refrigerated conditions, using strict COC procedures. Relevant documents (COC forms) were presented with the samples at the times of delivery. All supporting documents (COCs and SRAs) were completed in full and signed, where appropriate. Copies of these were included in **Appendix G**. El considered the field QA/QC program carried out during the ASI to be appropriate.

I2.4 Laboratory QA/QC

Primary and intra-laboratory duplicate samples were analysed by Eurofins, with inter-laboratory duplicate samples analysed by Envirolab. All laboratories are accredited by NATA for the analyses undertaken. A discussion of the laboratory DQIs is presented below.

DQI	Item	Conformance
Completeness	All critical samples analysed according to SAQP and proposal	Yes
A measure of the amount of useable data (expressed	All analytes analysed according to SAQP in proposal	Yes
as %) from a data collection activity	Appropriate methods and PQLs	Yes
	Sample documentation complete	Yes
	Sample holding times complied with	Yes
Comparability	Sample analytical methods used (including clean-up)	Yes
The confidence (expressed qualitatively) that data may	Sample PQLs (justify/ quantify if different)	Yes
be considered to be equivalent for each	Same laboratories (justify/ quantify if different)	Yes
sampling and analytical event	Same units (justify/ quantify if different)	Yes
Representativeness Confidence that data are representative of each media	All key samples analysed according to SAQP in the proposal	Yes
Precision	Analysis of laboratory duplicates	Yes
A quantitative measure of the variability (or	Analysis of field duplicates	Yes
reproducibility) of data	Analysis of laboratory-prepared volatile trip spikes	Yes
Accuracy	Analysis of field blanks	Yes
A quantitative measure of the closeness of reported	Analysis of rinsate blanks	Yes
data to the true value	Analysis of method blanks	Yes
	Analysis of matrix spikes (MS)	Yes
	Analysis of matrix spike duplicates (MSD)	Yes
	Analysis of surrogate spikes	Yes
	Analysis of reference materials	Not applicable
	Analysis of laboratory control samples	Yes

I2.5 Conclusions for the Laboratory QA/QC

All contracted laboratories (SGS and Envirolab) were accredited by NATA for the analyses undertaken. All analytical procedures used were industry recognised and endorsed standard methods. Appropriate QC measures were integrated into each testing batch and the DQI were met, or if not, the variability was suitably justified. All final reports were submitted in full and included all requested analyses, as per the signed COC forms. El considered the laboratory QA/QC programs carried out during the ASI to be appropriate.

I2.6 Summary of Project QA/QC

The project DQOs specified in **Section 6**, **Table 6-1** were considered to have been achieved. The adopted QA/QC program ensured that the data collated during the ASI were accurate, precise and representative of the (final) site conditions. It was therefore considered that the data were sufficiently precise and accurate and that the results could be used for ASI interpretative purposes.

Table I-5 Summary of QA/QC results for Investigation samples

_			TRH				BTEX				Heavy Metals							
Sample identification	Sampled Date	Description	Е Т.*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Du	plicate																	
GB-H204M-1	21/6/2021	Groundwater	<20	<50	<100	<100	<1	<1	<1	<3	2	< 0.2	2	1	1	< 0.1	2	36
GW-QT1	21/0/2021	Replicate of GB-H204M-1	<10	<50	<100	<100	<1	<1	<1	<3	2	<0.1	<1	3	<1	<0.05	12	37
RPD			NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NA	80.00	100.00	0.00	NA	142.86	2.74
Inter-laboratory	Ouplicate																	
BH200-QT	17/6/2021	Replicate of BH200-QD	<25	69	<100	<100	<0.2	<0.5	<1	<2	<4	<0.4	4	56	24	<0.1	15	170
BH200-QD	11/0/2021	Replicate of BH200-QT	29	64	180	<100	<0.1	<0.1	<0.1	<0.3	< 2	< 0.4	< 5	38	19	< 0.1	11	180
	RPD)	19.28	7.52	69.57	0.00	NA	NA	NA	NA	NA	NA	30.77	38.30	23.26	NA	30.77	5.71
GB-H204M-1	21/6/2021	Groundwater	<20	<50	<100	<100	<1	<1	<1	<3	2	< 0.2	2	1	1	< 0.1	2	36
GW-QD1	21/0/2021	Replicate of GB-H204M-1	<20	<50	<100	<100	<1	<1	<1	<3	3	< 0.2	2	4	< 1	< 0.1	12	34
	RPD		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	40.00	0.00	0.00	120.00	0.00	0.00	142.86	5.71
Trip blank		Trip blank (soil)	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
Trip spike	17/06/2021	Trip spike (soil)	-	-	-	-	[92%]	[88%]	[85%]	[85%]	-	-	-	-	-	-	-	-
BH200-RS		Rinsate	<20	<50	<100	<100	<1	<1	<1	<3	<1	<0.1	<1	<1	<1	<0.1	<1	<5
GW-TB1		Trip blank (water)	-	-	-	-	<1	<1	<1	<3	-	-	-	-	-	-	-	-
GW-TS1	21/06/2021	Trip spike (water)	-	-	-	-	[100%]	[100%]	[100%]	[98%]	-	-	-	-	-	-	-	-
GW-QR1		Rinsate	<20	<50	<100	<100	<1	<1	<1	<3	<1	<0.1	<1	<1	<1	<0.1	<1	<5

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit. RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE:

All soil results are reported in mg/kg . All water results are reported in $\mu\text{g/L}.$

* - to obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction

** - to obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction

